The reusable names table was being emptied as identifiers were used. This was sub-optimal for function parameters, because new identifiers would need to be created when exhausted.
Reset the reusable names list to a saved copy every time a new parameter list is started, in a similar fashion to what we did with the sequentially generated identifiers.
Rather than using tuples for set belonging, use a frozen set. That eliminates the need to separate them by lengths.
Also, 'Pop' is not a reserved word. It's perfectly valid as a possible substitution identifier, so allow it. If used, it will go to the used words anyway and thus will be skipped by the sequential name generator.
The former ones don't match LSL's behaviour, in particular llRotBetween(<1,0,0>,<-1,0,0>) should return <0,0,1,0> but it didn't. Fix by using an algorithm that is closer to the one used by the sim.
We had too much precision. In LSL, llRound(0.49999997) gives 1, not 0, because the loss of precision after adding 0.5 to that makes the result 1. Fixed by converting to F32 prior to flooring.
LL's algorithm for llEuler2Rot involves calculating a rotation matrix from the Eulers, then transforming the rotation matrix to quaternion. This generates sign discrepancies with our direct quaternion calculation algorithm.
Fixed by making only the necessary calculations to find the correct sign. Unfortunately, they are still heavy (notably, six more trig functions).
Mainly, the input quaternion wasn't being normalized prior to using it for calculations, and that broke compatibility. But even then, sometimes the arc sine of a value greater than 1 could be calculated, so we clamp it.
For all zeros input, the result was <1,0,0,0> but we were producing <0,0,0,.5> because the first branch was taken. Fixed.
We forgot to take the square root when calculating the magnitude of the quaternion while normalizing. Fixed.
Use qnz instead of special casing.
LSL behaves as if it was ZERO_ROTATION instead, so we fix it by creating a function that returns ZERO_ROTATION when given <0,0,0,0>. Use it for llRot2{Fwd,Left,Up} as well.
llAbs(-2147483648) raises this:
System.OverflowException: Value is too small.
at System.Math.Abs (Int32 value) [0x00000] in <filename unknown>:0
at LindenLab.SecondLife.Library.llAbs (Int32 i) [0x00000] in <filename unknown>:0
So it's actually not computable. In LSO it returns -2147483648, though.
llGetSubString and llList2List could produce output longer than the input for some params. Fix that, and join the functions into one unique function for uniformity. Also, get rid of the special case of empty elements, because it can be treated properly by the general case, and it's not so common as to merit special attention.
When the input was of the form e.g. "%4%40", the second "%" was erroneously starting another quoted character. LSL doesn't behave that way: parsing resumes without starting another quoted character. Disturbingly, the expected result in the corresponding test was wrong. Fixed both the test case and the code to match actual LSL behaviour.
llBase64ToString hid another surprise: characters in range from U+0000 to U+001F are substituted by "?" except for tabs (\x09), form feeds (\x0A), shift ins (\x0F) and unit separators (\x1F), which were kept verbatim. So, mimic this behaviour.
When a function was successfully applied, the resulting constant node was not marked as side effect-free. This could potentially lead to poor optimization.
Testing shows that AGENT_LIST_xxx values are not used as a bitfield, but as an enum. There are only three possible valid values. Check only those three.
Lists can't contain lists at runtime, but they can at parse time, so the optimizer must behave properly when handling nested lists. And it didn't, because it neglected to preserve the previous state of self.listmode. So we fix that.
The function's SEF status was not taken into account when substituting functions with their values. This affected llModPow and llXorBase64Strings, both of which have a delay, and were erroneously substituted.
But allow them to be substituted when in calculator mode.
When 'if', 'for', and 'while' statements have a label as the sub-statement, e.g. `while (FALSE) @label;`, the label was improperly removed in some cases, causing a potential compilation failure.
Why someone would want to do that, one never knows, but just to be sure, it has been fixed.
When a global list includes a reference to a global variable of type key, the corresponding list entry type is string, not key (SCR-295, possibly caused by SVC-1710 or SVC-4485).
This implementation is fishy, because it hard-codes the type in the node regardless of the child types. But in some quick experimenting, it seemed to work. And since the main purpose is to document LSO's behaviour, rather than actually being usable, it's OK like that.