# (C) Copyright 2015-2019 Sei Lisa. All rights reserved. # # This file is part of LSL PyOptimizer. # # LSL PyOptimizer is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # LSL PyOptimizer is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with LSL PyOptimizer. If not, see . # This module is used by the optimizer for resolving constant values. # # The functions it implements are all functions that always return the same # result when given the same input, and that have no side effects. # # For example, llAbs() is here, but llGetPos() is not, because it doesn't # always return the same result. # # This implies that functions present in this module can be precomputed if # their arguments are constants. # # In some instances, the result can't be computed; in these cases the function # raises a LSLCantCompute exception that is caught by the optimizer to leave # the expression unchanged. For example, llBase64ToInteger("AA") returns # unpredictable garbage in the low bytes in LSL, so it is left unchanged. # # The JSON functions have been separated to their own module. import re from lslcommon import * import lslcommon from ctypes import c_float import math import hashlib from base64 import b64encode, b64decode # Regular expressions used along the code. They are needed mainly because # Python lacks a C-like strtod/strtol (it comes close, but it is very picky # with what it accepts). We need to extract the number part of a string, or # Python will complain. # Also, Base64 needs the correct count of characters (len mod 4 can't be = 1). # The RE helps both in isolating the Base64 section and in trimming out the # offending characters; it just doesn't help with padding, with which Python is # also picky. We deal with that in the code by padding with '='*(-length & 3). # Despite what http://www.gnu.org/software/libc/manual/html_node/Parsing-of-Floats.html#Parsing-of-Floats # says, NaN(chars) does not work in LSL (which is relevant in vectors). # Note infinity vs. inf is necessary for parsing vectors & rotations, # e.g. (vector)"<1,inf,infix>" is not valid but (vector)"<1,inf,infinity>" is # as is (vector)"<1,inf,info>". The 1st gives <0,0,0>, the others <1,inf,inf>. # The lookahead (?!i) is essential for parsing them that way without extra code. # Note that '|' in REs is order-sensitive. float_re = re.compile(ur'^\s*[+-]?(?:0(x)(?:[0-9a-f]+(?:\.[0-9a-f]*)?|\.[0-9a-f]+)(?:p[+-]?[0-9]+)?' ur'|(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)(?:e[+-]?[0-9]+)?|inf|(nan))', re.I) vfloat_re = re.compile(ur'^\s*[+-]?(?:0(x)(?:[0-9a-f]+(?:\.[0-9a-f]*)?|\.[0-9a-f]+)(?:p[+-]?[0-9]+)?' ur'|(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)(?:e[+-]?[0-9]+)?|infinity|inf(?!i)|(nan))', re.I) int_re = re.compile(ur'^0(x)[0-9a-f]+|^\s*[+-]?[0-9]+', re.I) key_re = re.compile(ur'^[0-9a-f]{8}(?:-[0-9a-f]{4}){4}[0-9a-f]{8}$', re.I) b64_re = re.compile(ur'^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2,3})?') ZERO_VECTOR = Vector((0.0, 0.0, 0.0)) ZERO_ROTATION = Quaternion((0.0, 0.0, 0.0, 1.0)) NULL_KEY = u'00000000-0000-0000-0000-000000000000' TOUCH_INVALID_TEXCOORD = Vector((-1.0, -1.0, 0.0)) Infinity = float('inf') Indet = Infinity * 0 NaN = -Indet # Don't use float("nan") - Windows gets upset. class ELSLTypeMismatch(Exception): def __init__(self): super(ELSLTypeMismatch, self).__init__(u"Type mismatch") class ELSLMathError(Exception): def __init__(self): super(ELSLMathError, self).__init__(u"Math Error") class ELSLInvalidType(Exception): def __init__(self): super(ELSLInvalidType, self).__init__(u"Internal error: Invalid type") class ELSLCantCompute(Exception): pass # We don't yet support the LSO string model (arbitrary zero-terminated byte # sequences). This exception is triggered to report attempts at using it. class ELSONotSupported(Exception): pass # LSL types are translated to Python types as follows: # * LSL string -> Python unicode # * LSL key -> Key (class derived from unicode, no significant changes except __repr__) # * LSL integer -> Python int (should never be long) # * LSL float -> Python float # * LSL vector -> Vector (class derived from Python tuple) of 3 numbers (float) # * LSL rotation -> Quaternion (class derived from Python tuple) of 4 numbers (float) # * LSL list -> Python list Types = { int: 1, # TYPE_INTEGER float: 2, # TYPE_FLOAT unicode: 3, # TYPE_STRING Key: 4, # TYPE_KEY Vector: 5, # TYPE_VECTOR Quaternion: 6, # TYPE_ROTATION list: 0, # TYPE_INVALID } # Utility functions def F32(f, f32=True): """Truncate a float to have a precision equivalent to IEEE single""" if not f32: # don't truncate return f if isinstance(f, tuple): # vector, quaternion return f.__class__(F32(i) for i in f) # Alternative to the big blurb below. This relies on the machine using IEEE-754, though. # Using array: #from array import array #return array('f',(f,))[0] # Using struct: #from struct import pack, unpack #return unpack('f', pack('f', f))[0] # Using numpy: #import numpy #return float(numpy.float32(f)) # Using ctypes: #from ctypes import c_float return c_float(f).value # These are other approaches that are not fully debugged: # This one is tested against c_float, but not carefully verified: # if math.isnan(f) or math.isinf(f) or f == 0.0: # return f # # m, x = math.frexp(abs(f)) # # if x > 128: # return math.copysign(Infinity, f) # # if x < -125: # m = math.ldexp(m, x + 149) # x = -125 # else: # m = m * 0x1000000 # # frac = m % 1 # m -= frac # assert m.is_integer() # m = int(m) # # # Round to even # if frac > 0.5 or frac == 0.5 and (m & 1): # m += 1 # if m == 0x1000000: # m = 0x800000 # x += 1 # # # re-check for overflow # if x > 128: # return math.copysign(Infinity, f) # # if m == 0: # return math.copysign(0.0, f) # # return math.ldexp(math.copysign(m/16777216.0, f), x) # # Another alternative. # m, x = math.frexp(abs(f)) # if x > 128: # return math.copysign(Infinity, f) # if x < -149: # return math.copysign(0.0, f) # if x < -125: # e = 1<<(x+149) # else: # e = 16777216.0 # # Special corner case with rounding near the maximum float (e.g. 3.4028236e38 gets rounded up, going out of range for a F32) # if m*e >= 16777215.5 and x == 128: # return math.copysign(Infinity, f) # return math.ldexp(math.copysign(math.floor(m*e+0.5)/e, f), x) # # Original old-fashioned strategy (watch out for the 16777215.5 bug above): # # if math.isinf(f) or math.isnan(f) or f==0: # return f # s = math.copysign(1, f) # # This number may not be precise enough if Python had infinite precision, but it works for us. # if f < 0.0000000000000000000000000000000000000000000007006492321624086132496: # return math.copysign(0.0, s) # f = abs(f) # # # # TO DO: Check this boundary (this is 2^128) # if f >= 340282366920938463463374607431768211456.0: # return math.copysign(Infinity, s) # # # TO DO: Check this boundary (2^-126; hopefully there's some overlap and the precision can be cut) # if f < 0.000000000000000000000000000000000000011754943508222875079687365372222456778186655567720875215087517062784172594547271728515625: # # Denormal range # f *= 713623846352979940529142984724747568191373312.0 # e = 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125 # 2^-149 # else: # e = 1.0 # # This first loop is an optimization to get closer to the destination faster for very small numbers # while f < 1.0: # f *= 16777216.0 # e *= 0.000000059604644775390625 # # Go bit by bit # while f < 8388608.0: # f *= 2.0 # e *= 0.5 # # #This first loop is an optimization to get closer to the destination faster for very big numbers # while f >= 140737488355328.0: # f *= 0.000000059604644775390625 # e *= 16777216.0 # # Go bit by bit # while f >= 16777216.0: # f *= 0.5 # e *= 2.0 # # return math.copysign(math.floor(f+0.5)*e, s) def S32(val): """Return a signed integer truncated to 32 bits (must deal with longs too)""" if -2147483648 <= val <= 2147483647: return int(val) val &= 0xFFFFFFFF if val > 2147483647: return int(val - 4294967296) return int(val) def zstr(s): if not isinstance(s, unicode): # This can only be the result of an internal error; call attention to # it by raising ELSLInvalidType instead of ELSLTypeMismatch. raise ELSLInvalidType zi = s.find(u'\0') if zi < 0: return s return s.__class__(s[:zi]) def fi(x): """Force x to be an int""" if type(x) != int or not (-2147483648 <= x <= 2147483647): raise ELSLTypeMismatch return x def ff(x): """Force x to be a float""" if int != type(x) != float: raise ELSLTypeMismatch if type(x) != float: return InternalTypecast(x, float, False, True) return F32(x) def fk(k): """Force k to be a key""" if unicode != type(k) != Key: raise ELSLTypeMismatch if type(k) != Key: k = InternalTypecast(k, Key, False, False) return k def fs(s): """Force s to be a string""" if unicode != type(s) != Key: raise ELSLTypeMismatch if type(s) != unicode: s = InternalTypecast(s, unicode, False, False) return s def fl(L): """Force l to be a list, and its elements to have sane types.""" Lorig = L if type(L) != list: raise ELSLTypeMismatch for i in xrange(len(L)): t = type(L[i]) if t not in Types: raise ELSLInvalidType if t == Vector: # copy on write if L is Lorig: L = L[:] L[i] = v2f(L[i]) if t == Quaternion: # copy on write if L is Lorig: L = L[:] L[i] = q2f(L[i]) return L def q2f(q): if type(q) != Quaternion: raise ELSLTypeMismatch if type(q[0]) == type(q[1]) == type(q[2]) == type(q[3]) == float: return q return Quaternion((ff(q[0]), ff(q[1]), ff(q[2]), ff(q[3]))) def v2f(v): if type(v) != Vector: raise ELSLTypeMismatch if type(v[0]) == type(v[1]) == type(v[2]) == float: return v return Vector((ff(v[0]), ff(v[1]), ff(v[2]))) def f2s(val, DP=6): if math.isinf(val): return u'Infinity' if val > 0 else u'-Infinity' if math.isnan(val): return u'NaN' if lslcommon.LSO or val == 0.: return u'%.*f' % (DP, val) # deals with -0.0 too # Format according to Mono rules (7 decimals after the DP, found experimentally) s = u'%.*f' % (DP+7, val) if s[:DP+3] == u'-0.' + '0'*DP and s[DP+3] < u'5': return u'0.' + '0'*DP # underflown negatives return 0.0 except for -0.0 dealt with above # Separate the sign sgn = u'-' if s[0] == u'-' else u'' if sgn: s = s[1:] # Look for position of first nonzero from the left i = 0 while s[i] in u'0.': i += 1 dot = s.index(u'.') # Find rounding point. It's either the 7th digit after the first significant one, # or the (DP+1)-th decimal after the period, whichever comes first. digits = 0 while digits < 7: if i >= dot+1+DP: break if i == dot: i += 1 i += 1 digits += 1 if s[i if i != dot else i+1] >= u'5': # Rounding - increment s[:i] storing result into new_s new_s = u'' ci = i-1 # carry index while ci >= 0 and s[ci] == u'9': new_s = u'0' + new_s ci -= 1 if ci == dot: ci -= 1 # skip over the dot new_s = u'.' + new_s # but add it to new_s if ci < 0: new_s = u'1' + new_s # 9...9 -> 10...0 else: # increment s[ci] e.g. 43999 -> 44000 new_s = s[:ci] + chr(ord(s[ci]) + 1) + new_s else: new_s = s[:i] if i <= dot: return sgn + new_s + u'0' * (dot - i) + u'.' + u'0' * DP return sgn + new_s + u'0' * (dot + 1 + DP - i) def vr2s(v, DP=6): assert len(v) == (3 if type(v) == Vector else 4) return u'<' + ', '.join(f2s(x, DP) for x in v) + u'>' def qnz(q): return Quaternion((0.,0.,0.,1.)) if all(x == 0. for x in q) else q def qnorm(q): q = qnz(q) mag2 = math.fsum((q[0]*q[0], q[1]*q[1], q[2]*q[2], q[3]*q[3])) # Threshold for renormalization eps_h = 1.0000021457672119140625 # float.fromhex('0x1.000024p0') eps_l = 0.99999797344207763671875 # float.fromhex('0x1.FFFFBCp-1') if mag2 >= eps_h or mag2 <= eps_l: # Renormalize mag2 = math.sqrt(mag2) return Quaternion((q[0]/mag2, q[1]/mag2, q[2]/mag2, q[3]/mag2)) return q def InternalTypecast(val, out, InList, f32): """Type cast val to out, following LSL rules. To avoid mutual recursion, it deals with everything except lists. That way it does not need to call InternalList2Strings which needs to call it. """ tval = type(val) # The case tval == list is handled in typecast() below. if out == list: return [val] if tval == int: # integer val = S32(val) if out == int: return val if out == float: return F32(val, f32) if out == unicode: return unicode(val) raise ELSLTypeMismatch if tval == float: val = F32(val, f32) if out == int: return S32(int(val)) if val >= -2147483648.0 and val < 2147483648.0 else -2147483648 if out == float: return val if out == unicode: return f2s(val, 6) raise ELSLTypeMismatch if tval == Vector: val = v2f(val) if out == Vector: return val if out == unicode: return vr2s(val, 6 if InList else 5) raise ELSLTypeMismatch if tval == Quaternion: val = q2f(val) if out == Quaternion: return val if out == unicode: return vr2s(val, 6 if InList else 5) raise ELSLTypeMismatch if tval == Key: # key if out == Key: return zstr(val) if out == unicode: return zstr(unicode(val)) raise ELSLTypeMismatch if tval == unicode: val = zstr(val) if out == unicode: return val if out == Key: return Key(val) if out == float: # Clean up the string for Picky Python match = float_re.search(val) if match is None: return 0.0 if match.group(1): ret = float.fromhex(match.group(0)) elif match.group(2): # (float)"-nan" produces NaN instead of Indet, even though # (vector)"<-nan,0,0>" produces . Go figure. ret = NaN else: ret = float(match.group(0)) if not lslcommon.LSO and abs(ret) < 1.1754943157898259e-38: # Mono doesn't return denormals when using (float)"val" # (but it returns them when using (vector)"") ret = 0.0 return F32(ret, f32) if out == int: match = int_re.search(val) if match is None: return 0 val = match.group(0) if match.group(1): val = int(val, 0) else: val = int(val) if -4294967295 <= val <= 4294967295: return S32(val) return -1 if out in (Vector, Quaternion): Z,dim = (ZERO_VECTOR,3) if out == Vector else (ZERO_ROTATION,4) ret = [] if val[0:1] != u'<': return Z val = val[1:] for _ in range(dim): match = vfloat_re.search(val) if match is None: return Z if match.group(1): ret.append(F32(float.fromhex(match.group(0)), f32)) elif match.group(2): ret.append(Indet if match.group(0)[0] == '-' else NaN) else: ret.append(F32(float(match.group(0)), f32)) if len(ret) < dim: i = match.end() if val[i:i+1] != u',': return Z val = val[i+1:] return out(ret) # convert type # To avoid mutual recursion, this was moved: #if tval == list: # etc. raise ELSLInvalidType def InternalList2Strings(val): """Convert a list of misc.items to a list of strings.""" ret = [] for elem in val: ret.append(InternalTypecast(elem, unicode, InList=True, f32=True)) return ret def InternalUTF8toString(s): # Note Mono and LSO behave differently here. # LSO *CAN* store invalid UTF-8. # For example, llEscapeURL(llUnescapeURL("%80%C3")) gives "%80%C3" in LSO. # (But llEscapeURL(llUnescapeURL("%80%00%C3")) still gives "%80") # We don't emulate it, we've built this with Unicode strings in mind. # decode(..., 'replace') replaces invalid chars with U+FFFD which is not # what LSL does (LSL replaces with '?'). Since U+FFFD must be preserved if # present, we need to write our own algorithm. # Problem: Aliases are not valid UTF-8 for LSL, and code points above # U+10FFFF are not supported. Both things complicate the alg a bit. ret = u'' partialchar = b'' pending = 0 for c in s: o = ord(c) if partialchar: if 0x80 <= o < 0xC0 and ( partialchar[1:2] or b'\xC2' <= partialchar < b'\xF4' and partialchar not in b'\xE0\xED\xF0' or partialchar == b'\xE0' and o >= 0xA0 or partialchar == b'\xED' and o < 0xA0 or partialchar == b'\xF0' and o >= 0x90 or partialchar == b'\xF4' and o < 0x90 ): partialchar += c pending -= 1 if pending == 0: ret += partialchar.decode('utf8') partialchar = b'' c = c # NOTE: Without the above line, the following one hits a bug in # python-coverage. It IS executed but not detected. continue if lslcommon.LSO: raise ELSONotSupported(u"Byte strings not supported") ret += u'?' * len(partialchar) partialchar = b'' # fall through to process current character if o >= 0xC2 and o <= 0xF4: partialchar = c pending = 1 if o < 0xE0 else 2 if o < 0xF0 else 3 elif o >= 0x80: if lslcommon.LSO: raise ELSONotSupported(u"Byte strings not supported") ret += u'?' else: ret += c.decode('utf8') if partialchar: if lslcommon.LSO: raise ELSONotSupported(u"Byte strings not supported") ret += u'?' * len(partialchar) return zstr(ret) # The code of llDeleteSubList and llDeleteSubString is identical except for the # type check. Same for llGetSubString and llList2List. They are all joined into # one single function. def InternalGetDeleteSubSequence(val, start, end, isGet): start = fi(start) end = fi(end) L = len(val) # Python does much of the same thing as LSL here, which helps a lot if end == -1: end += L if (start+L if start < 0 else start) > (end+L if end < 0 else end): # Exclusion range - get/delete from end and start return val[:end+1] + val[start:] if isGet else val[end+1:start] return val[start:end+1] if isGet else val[:start] + val[end+1:] def typecast(val, out, InList=False, f32=True): """Type cast an item. Calls InternalList2Strings for lists and defers the rest to InternalTypecast. """ if type(val) == list: if out == list: return val # NOTE: We're not duplicating it here. if out == unicode: return u''.join(InternalList2Strings(val)) raise ELSLTypeMismatch return InternalTypecast(val, out, InList, f32) def neg(val): if type(val) in (int, float): if type(val) == int and val == -2147483648: return val return -val if isinstance(val, tuple): return val.__class__(-f for f in val) raise ELSLTypeMismatch def add(a, b, f32=True): # defined for: # scalar+scalar # vector+vector # rotation+rotation # string+string # (our extension:) key+string, string+key # list+any # any+list ta=type(a) tb=type(b) if ta in (int, float) and tb in (int, float): if ta == tb == int: return S32(a+b) return F32(ff(a)+ff(b), f32) if ta == tb in (list, unicode): return a + b # string + key, key + string are allowed here if ta in (unicode, Key) and tb in (unicode, Key) and not (ta == tb == Key): return a + b if ta == list: return a + [b] if tb == list: return [a] + b if ta == tb in (Vector, Quaternion): return F32(ta(ff(a[i])+ff(b[i]) for i in range(len(a))), f32) raise ELSLTypeMismatch def sub(a, b, f32=True): # defined for: # scalar+scalar # vector+vector # rotation+rotation ta=type(a) tb=type(b) if ta in (int, float) and tb in (int, float): if ta == tb == int: return S32(a-b) return F32(ff(a)-ff(b), f32) if ta == tb in (Vector, Quaternion): return F32(ta(ff(a[i])-ff(b[i]) for i in range(len(a))), f32) raise ELSLTypeMismatch def mul(a, b, f32=True): # defined for: # scalar*scalar # scalar*vector # vector*scalar # vector*vector # vector*rotation # rotation*rotation ta = type(a) tb = type(b) # If either type is string, list, or key, error if ta in (unicode, list, Key) or tb in (unicode, list, Key): raise ELSLTypeMismatch # only int, float, vector, quaternion here if ta in (int, float): if tb in (int, float): if ta == tb == int: return S32(a*b) if math.isnan(a) and math.isnan(b): return (-NaN if math.copysign(1, a) == math.copysign(1, b) == -1 else NaN) return F32(ff(a)*ff(b), f32) if tb != Vector: # scalar * quat is not defined raise ELSLTypeMismatch # scalar * vector a, ta, b, tb = b, tb, a, ta # turn into vector * scalar if ta == Quaternion: # quat * scalar and quat * vector are not defined if tb != Quaternion: raise ELSLTypeMismatch a = q2f(a) b = q2f(b) # quaternion product - product formula reversed return Quaternion(F32((a[0] * b[3] + a[3] * b[0] + a[2] * b[1] - a[1] * b[2], a[1] * b[3] - a[2] * b[0] + a[3] * b[1] + a[0] * b[2], a[2] * b[3] + a[1] * b[0] - a[0] * b[1] + a[3] * b[2], a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2]), f32)) if ta != Vector: raise ELSLInvalidType # Should never happen at this point if tb in (int, float): a = v2f(a) b = ff(b) return Vector(F32((mul(a[0], b), mul(a[1], b), mul(a[2], b)), f32)) if tb == Vector: # scalar product a = v2f(a) b = v2f(b) return F32(math.fsum((a[0]*b[0], a[1]*b[1], a[2]*b[2])), f32) if tb != Quaternion: raise ELSLInvalidType # Should never happen at this point # vector * quaternion: perform conjugation #v = mul(Quaternion((-b[0], -b[1], -b[2], b[3])), mul(Quaternion((a[0], a[1], a[2], 0.0)), b, f32=False)) #return Vector((v[0], v[1], v[2])) # this is more precise as it goes directly to the gist of it: a = v2f(a) b = q2f(b) return Vector(F32(( math.fsum(( a[0]*(b[0]*b[0]-b[1]*b[1]-b[2]*b[2]+b[3]*b[3]), a[1]*2*(b[0]*b[1]-b[2]*b[3]), a[2]*2*(b[0]*b[2]+b[1]*b[3]))), math.fsum(( a[0]*2*(b[0]*b[1]+b[2]*b[3]), -a[1]*(b[0]*b[0]-b[1]*b[1]+b[2]*b[2]-b[3]*b[3]), # notice minus sign a[2]*2*(b[1]*b[2]-b[0]*b[3]))), math.fsum(( a[0]*2*(b[0]*b[2]-b[1]*b[3]), a[1]*2*(b[1]*b[2]+b[0]*b[3]), -a[2]*(b[0]*b[0]+b[1]*b[1]-b[2]*b[2]-b[3]*b[3]))) # notice minus sign ), f32)) def div(a, b, f32=True): # defined for: # scalar/scalar # vector/scalar # vector/rotation # rotation/rotation ta = type(a) tb = type(b) if tb in (int, float): if b == 0: raise ELSLMathError if ta in (int, float): if ta == int and tb == int: # special case if a == -2147483648 and b == -1: return a # this could be handled by using S32 but it's probably faster this way if (a < 0) ^ (b < 0): # signs differ - Python rounds towards -inf, we need rounding towards 0 return -(a//-b) return a//b ret = F32(ff(a)/ff(b), f32) if math.isnan(ret): # A NaN result gives a math error. raise ELSLMathError return ret if ta == Vector: a = v2f(a) b = ff(b) return Vector(F32(tuple(NaN if math.isnan(x) and math.isnan(b) and math.copysign(1, x) != math.copysign(1, b) else x/b for x in a), f32)) if tb == Quaternion: # division by a rotation is multiplication by the conjugate of the rotation # defer the remaining type checks to mul() return mul(a, Quaternion((-b[0],-b[1],-b[2],b[3])), f32) raise ELSLTypeMismatch def mod(a, b, f32=True): # defined only for integers and vectors if type(a) == type(b) == int: if b == 0: raise ELSLMathError if a < 0: return int(-((-a) % abs(b))) return int(a % abs(b)) if type(a) == type(b) == Vector: # cross product a = v2f(a) b = v2f(b) return Vector(F32((a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]), f32)) raise ELSLTypeMismatch def compare(a, b, Eq = True): """Calculate a == b when Eq is True, or a != b when not""" # Defined for all types as long as one of them can be auto-cast to the other ta = type(a) tb = type(b) if ta in (int, float) and tb in (int, float): # we trust that NaN == NaN is False if ta == tb == int: ret = a == b else: ret = ff(a) == ff(b) return int(ret == Eq) if ta in (unicode, Key) and tb in (unicode, Key): ret = 0 if a == b else 1 if (not lslcommon.LSO or a.encode('utf8') > b.encode('utf8')) else -1 return int(not ret) if Eq else ret if ta == tb in (Vector, Quaternion): ret = not any(ae != be for ae, be in zip(a, b)) return int(ret == Eq) if ta == tb == list: ret = len(a) - len(b) return int(not ret) if Eq else ret raise ELSLTypeMismatch def less(a, b): """Calculate a < b. The rest can be derived by swapping components and by negating: a > b is less(b,a); a <= b is 1-less(b,a); a >= b is 1-less(a,b). """ if type(a) == type(b) == int: return int(a < b) if type(a) in (int, float) and type(b) in (int, float): return int(ff(a) < ff(b)) raise ELSLTypeMismatch def cond(x): """Test whether x evaluates to True in a condition (if, while, for, ...)""" tx = type(x) if tx not in Types: raise ELSLInvalidType if tx == Key: if x == NULL_KEY or len(x) != 36: return False return bool(key_re.search(x)) if tx == Vector: return bool(compare(x, ZERO_VECTOR, Eq=False)) if tx == Quaternion: return bool(compare(x, ZERO_ROTATION, Eq=False)) if lslcommon.LSO and tx == list: # SVC-689: lists of 1 element count as false return len(x) > 1 return bool(x) # works fine for int, float, string, list def reduce(t): t = F32(t) if not t.is_integer(): return t # Accurate-ish until big numbers come into play return int(t * 18446744073709551616) % 115904311329233965478 / 18446744073709551616. # # LSL-compatible computation functions # def llAbs(i): i = fi(i) if i != -2147483648: return abs(i) if lslcommon.LSO: return i # Mono raises an OverflowException in this case. raise ELSLCantCompute def llAcos(f): f = ff(f) try: return F32(math.acos(f)) if not math.isnan(f) else f except ValueError: return NaN def llAngleBetween(r1, r2): r1 = q2f(r1) r2 = q2f(r2) return llRot2Angle(div(qnz(r1), qnz(r2), f32=False)) def llAsin(f): f = ff(f) try: return F32(math.asin(f)) if not math.isnan(f) else f except ValueError: return NaN def llAtan2(y, x): y = ff(y) x = ff(x) if math.isnan(x) and math.isnan(y): return mul(x, y) if math.isnan(x): return x if math.isnan(y): return y return F32(math.atan2(y, x)) def llAxes2Rot(fwd, left, up): fwd = v2f(fwd) left = v2f(left) up = v2f(up) # One of the hardest. t = math.fsum((fwd[0], left[1], up[2])) if t > 0.: # no danger of division by zero or negative roots r = math.sqrt(1. + t) s = 0.5/r # For the case of ix+jy+kz > 0, it can return an unnormalized quaternion return Quaternion(F32((s*(left[2]-up[1]), s*(up[0]-fwd[2]), s*(fwd[1]-left[0]), r*0.5))) # Find a positive combo. LSL normalizes the result in these cases only, so we do the same. if left[1] <= fwd[0] >= up[2]: # is fwd[0] the greatest? r = math.sqrt(1. + fwd[0] - left[1] - up[2]) s = 0.5/r q = (r*0.5, s*(fwd[1]+left[0]), s*(up[0]+fwd[2]), s*(left[2]-up[1])) elif fwd[0] <= left[1] >= up[2]: # is left[1] the greatest? r = math.sqrt(1. - fwd[0] + left[1] - up[2]) s = 0.5/r q = (s*(fwd[1]+left[0]), r*0.5, s*(left[2]+up[1]), s*(up[0]-fwd[2])) else: # Only one case remaining: up[2] is the greatest r = math.sqrt(1. - fwd[0] - left[1] + up[2]) s = 0.5/r q = (s*(up[0]+fwd[2]), s*(left[2]+up[1]), r*0.5, s*(fwd[1]-left[0])) # Normalize q = qnz(q) mag = math.sqrt(math.fsum((q[0]*q[0], q[1]*q[1], q[2]*q[2], q[3]*q[3]))) return Quaternion(F32((q[0]/mag, q[1]/mag, q[2]/mag, q[3]/mag))) def llAxisAngle2Rot(axis, angle): axis = v2f(axis) angle = ff(angle) axis = llVecNorm(axis, f32=False) if axis == ZERO_VECTOR: angle = 0. c = math.cos(angle*0.5) s = math.sin(angle*0.5) return Quaternion(F32((axis[0]*s, axis[1]*s, axis[2]*s, c))) # NOTE: This one does not always return the same value in LSL. When it isn't # deterministic, it raises ELSLCantCompute. def llBase64ToInteger(s): s = fs(s) if len(s) > 8: return 0 s = b64_re.search(s).group() i = len(s) s = b64decode(s + u'='*(-i & 3)) if len(s) < 3: # not computable deterministically raise ELSLCantCompute s = (s + b'\0')[:4] i = ord(s[0]) if s[0] < b'\x80' else ord(s[0])-256 return (i<<24)+(ord(s[1])<<16)+(ord(s[2])<<8)+ord(s[3]) b64tos_re = re.compile( b'(' # Those pass through and are caught by InternalUTF8toString: b'\x00$' # NUL at last position (zstr removes it) b'|[\x09\x0A\x0F\x1F-\x7F\xFE\xFF]|[\xC2-\xDF][\x80-\xBF]' b'|(?:\xE0[\xA0-\xBF]|[\xE1-\xEF][\x80-\xBF])[\x80-\xBF]' b'|(?:\xF0[\x90-\xBF]|[\xF1-\xF7][\x80-\xBF])[\x80-\xBF]{2}' b'|(?:\xF8[\x88-\xBF]|[\xF9-\xFB][\x80-\xBF])[\x80-\xBF]{3}' b'|(?:\xFC[\x84-\xBF]|\xFD[\x80-\xBF])[\x80-\xBF]{4}' b')|(' # Those are caught here and substituted by a single "?" # (greediness is important here): b'[\x00-\x1F\x80-\xBF]' b'|[\xC0-\xDF][\x80-\xBF]?' b'|[\xE0-\xEF][\x80-\xBF]{0,2}' b'|[\xF0-\xF7][\x80-\xBF]{0,3}' b'|[\xF8-\xFB][\x80-\xBF]{0,4}' b'|[\xFC-\xFD][\x80-\xBF]{0,5}' b')|(.)' # should never be reached ) def llBase64ToString(s): s = fs(s) s = b64_re.search(s).group(0) # llUnescapeURL and llBase64ToString behave differently. # llBase64ToString does a first check on the UTF-8 before the standard # conversion, unlike llUnescapeURL. That makes it have a much more similar # behaviour to LSO's than llUnescapeURL does. But LL being LL, the check # is, of course, flawed, and some illegal sequences pass as good (but in # Mono they are fortunately stopped on the conversion to UTF-8 instead). # The check that llBase64ToString does has the quirk that the invalid # sequences that it catches are treated as 1 single bad character instead # of as many as the sequence has. The latter is what normal conversion to # UTF-8 does. This causes inconsistencies in the number of ?'s returned. # In llBase64ToString, trailing NUL is stripped, and embedded NULs are # converted to "?". In addition, characters in range 00-1F are also # converted to "?" except for \x09, \x0A, \x0F, \x1F. byteseq = bytearray(b64decode(s + u'=' * (-len(s) & 3))) pos = 0 match = b64tos_re.search(byteseq, pos) while match is not None: assert match.group(3) is None, 'Fail in b64tos_re: ' + match.group(3) L = len(match.group(2) or '') if L: byteseq[pos:pos+L] = b'?' pos = match.end(2) - L + 1 else: pos = match.end(1) match = b64tos_re.search(byteseq, pos) return InternalUTF8toString(bytes(byteseq)) def llCSV2List(s): s = fs(s) bracketlevel = 0 lastwascomma = True # first space is eaten!!! lastidx = 0 i = 0 ret = [] for c in s: if bracketlevel: # ignore ',', focus on nesting level if c == u'<': bracketlevel += 1 elif c == u'>': bracketlevel -= 1 elif lastwascomma and c == u' ': # eat space after comma lastwascomma = False lastidx = i+1 else: lastwascomma = False if c == u',': lastwascomma = True ret.append(s[lastidx:i]) lastidx = i+1 elif c == u'<': bracketlevel += 1 i += 1 ret.append(s[lastidx:i]) return ret def llCeil(f): f = ff(f) if math.isnan(f) or math.isinf(f) or f >= 2147483648.0 or f < -2147483648.0: return -2147483648 return int(math.ceil(f)) def llCos(f): f = ff(f) if math.isinf(f): return Indet if -9223372036854775808.0 < f < 9223372036854775808.0: return F32(math.cos(reduce(f))) return f def llDeleteSubList(lst, start, end): # This acts as llList2List if there's wraparound lst = fl(lst) return InternalGetDeleteSubSequence(lst, start, end, isGet=False) def llDeleteSubString(s, start, end): # This acts as llGetSubString if there's wraparound s = fs(s) return InternalGetDeleteSubSequence(s, start, end, isGet=False) def llDumpList2String(lst, sep): lst = fl(lst) sep = fs(sep) return sep.join(InternalList2Strings(lst)) def llEscapeURL(s): s = fs(s) s = s.encode('utf8') # get bytes ret = u'' for c in s: if b'A' <= c <= b'Z' or b'a' <= c <= b'z' or b'0' <= c <= b'9': ret += c.encode('utf8') else: ret += u'%%%02X' % ord(c) return ret def llEuler2Rot(v): v = v2f(v) c0 = math.cos(v[0]*0.5) s0 = math.sin(v[0]*0.5) c1 = math.cos(v[1]*0.5) s1 = math.sin(v[1]*0.5) c2 = math.cos(v[2]*0.5) s2 = math.sin(v[2]*0.5) r = F32((s0 * c1 * c2 + c0 * s1 * s2, c0 * s1 * c2 - s0 * c1 * s2, c0 * c1 * s2 + s0 * s1 * c2, c0 * c1 * c2 - s0 * s1 * s2)) # Fix the sign c0 = math.cos(v[0]) s0 = math.sin(v[0]) c1 = math.cos(v[1]) s1 = math.sin(v[1]) c2 = math.cos(v[2]) s2 = math.sin(v[2]) d1 = c1*c2 d2 = c0*c2 - s0*s1*s2 d3 = c0*c1 if d1 + d2 + d3 > 0: return Quaternion(-f for f in r) if r[3] < 0 else Quaternion(r) i = 0 if d2 > d1: i = 1 if d1 < d3 > d2: i = 2 return Quaternion(-f for f in r) if r[i] < 0 else Quaternion(r) def llFabs(f): f = ff(f) if f == 0.0 or math.isnan(f): # llFabs(-0.0) is -0.0; llFabs(-nan) is -nan return f return math.fabs(f) def llFloor(f): f = ff(f) if math.isnan(f) or math.isinf(f) or f >= 2147483648.0 or f < -2147483648.0: return -2147483648 return int(math.floor(f)) def llFrand(lim): lim = ff(lim) if math.isinf(lim): return 0. if abs(lim) < float.fromhex('0x1p-126'): return -0. if lim < 0 else 0. if math.isnan(lim): return lim if lslcommon.IsCalc: import random val = random.random() * lim # Truncate, rather than rounding m, e = math.frexp(val) val = F32(math.ldexp(int(m * 16777216.) * .000000059604644775390625, e)) if val == lim: # this should never happen # (it can happen on denormals, but these cause output of 0.0) val = 0. # pragma: no cover return val # Can't give a concrete value raise ELSLCantCompute def llGenerateKey(): if lslcommon.IsCalc: import time import random s = hashlib.md5((u'%.17g %f %f' % (time.time(), random.random(), random.random())).encode('utf8') ).hexdigest() return Key('-'.join((s[:8], s[8:12], s[12:16], s[16:20], s[20:32]))) # Can't give a concrete value raise ELSLCantCompute def llGetListEntryType(lst, pos): lst = fl(lst) pos = fi(pos) try: return Types[type(lst[pos])] except IndexError: # list index out of bounds return 0 # TYPE_INVALID except KeyError: # type of element not in Types raise ELSLInvalidType def llGetListLength(lst): lst = fl(lst) return len(lst) def llGetSubString(s, start, end): s = fs(s) return InternalGetDeleteSubSequence(s, start, end, isGet=True) def llInsertString(s, pos, src): s = fs(s) pos = fi(pos) src = fs(src) if pos < 0: pos = 0 # llInsertString does not support negative indices return s[:pos] + src + s[pos:] def llIntegerToBase64(x): x = fi(x) return b64encode(chr((x>>24)&255) + chr((x>>16)&255) + chr((x>>8)&255) + chr(x&255)).decode('utf8') def llList2CSV(lst): lst = fl(lst) ret = [] for elem in lst: # This always uses LSO rules for float to string. if type(elem) == float: if math.isnan(elem) and math.copysign(1.0, elem) < 0: ret.append(u'-nan') else: ret.append(u'%.6f' % elem) elif type(elem) in (Vector, Quaternion): ret.append(u'<' + llList2CSV(list(elem)) + u'>') else: ret.append(InternalTypecast(elem, unicode, InList=True, f32=True)) ret = u', '.join(ret) return ret def llList2Float(lst, pos): lst = fl(lst) pos = fi(pos) try: elem = lst[pos] if type(elem) == float: return elem if type(elem) in (int, unicode): return InternalTypecast(elem, float, InList=True, f32=True) except IndexError: pass return 0.0 def llList2Integer(lst, pos): lst = fl(lst) pos = fi(pos) try: elem = lst[pos] if type(elem) == int: return elem if type(elem) in (float, unicode): return InternalTypecast(elem, int, InList=True, f32=True) return 0 except IndexError: return 0 def llList2Key(lst, pos): lst = fl(lst) pos = fi(pos) try: elem = lst[pos] if type(elem) == Key: return elem if type(elem) == unicode: return Key(elem) except IndexError: pass if lslcommon.LSO: return Key(NULL_KEY) return Key(u'') def llList2List(lst, start, end): lst = fl(lst) start = fi(start) end = fi(end) return InternalGetDeleteSubSequence(lst, start, end, isGet=True) def llList2ListStrided(lst, start, end, stride): lst = fl(lst) start = fi(start) end = fi(end) stride = fi(stride) stride = abs(stride) if stride != 0 else 1 L = len(lst) if start < 0: start += L if end < 0: end += L if start > end: start = 0 end = L-1 # start is rounded up to ceil(start/stride)*stride start = ((start+stride-1)/stride)*stride # end is rounded down to floor(start/stride)*stride end = (end/stride)*stride return lst[start:end+1:stride] def llList2Rot(lst, pos): lst = fl(lst) pos = fi(pos) try: elem = lst[pos] if type(elem) == Quaternion: # The list should not contain integer quaternion components, but # we don't err here if not. Instead we return the integer-less # quaternion when asked. return q2f(elem) except IndexError: pass return ZERO_ROTATION def llList2String(lst, pos): lst = fl(lst) pos = fi(pos) try: return InternalTypecast(lst[pos], unicode, InList=True, f32=True) except IndexError: pass return u'' def llList2Vector(lst, pos): lst = fl(lst) pos = fi(pos) try: elem = lst[pos] if type(elem) == Vector: # The list should not contain integer vector components, but # we don't control that here. Instead we return the integer-less # vector when asked. return v2f(elem) except IndexError: pass return ZERO_VECTOR def llListFindList(lst, elems): lst = fl(lst) elems = fl(elems) # NaN is found in floats, but not in vectors L1 = len(lst) L2 = len(elems) if L2 > L1: return -1 # can't find a sublist longer than the original list if L2 == 0: # empty list is always found at position 0 in Mono, # and in LSO if the first list isn't empty return -1 if lslcommon.LSO and L1 == 0 else 0 for i in xrange(L1-L2+1): for j in xrange(L2): e1 = lst[i+j] e2 = elems[j] if type(e1) == type(e2) == float: if e1 == e2: continue # Exceptionally, NaN equals NaN if math.isnan(e1) and math.isnan(e2): continue # Mismatch break elif type(e1) == type(e2) in (Vector, Quaternion): # Act as if the list's vector/quat was all floats, even if not if type(e1) == Vector: e1 = v2f(e1) e2 = v2f(e2) else: e1 = q2f(e1) e2 = q2f(e2) # Unfortunately, Python fails to consider (NaN,) != (NaN,) sometimes # so we need to implement our own test for e1e,e2e in zip(e1,e2): if e1e != e2e: # NaNs are considered different to themselves here as normal # Mismatch in vector/quaternion sub-element break else: # No mismatch in any sub-element, try next list element continue break # discrepancy found elif type(e1) != type(e2) or e1 != e2: break # mismatch else: # no mismatch return i return -1 def llListInsertList(lst, elems, pos): lst = fl(lst) elems = fl(elems) pos = fi(pos) # Unlike llInsertString, this function does support negative indices. return lst[:pos] + elems + lst[pos:] # not implemented as it does not give the same output for the same input #def llListRandomize(x): def llListReplaceList(lst, elems, start, end): lst = fl(lst) elems = fl(elems) start = fi(start) end = fi(end) L = len(lst) if start < -L: # llListReplaceList([0,1,2,3],[5],-5,-5) should return [0,1,2,3] # llListReplaceList([0,1,2,3],[5],-5,-4) should return [1,2,3] # llListReplaceList([0,1,2,3],[5],-5,-7) should return [] elems = [] if (start + L if start < 0 else start) > (end + L if end < 0 else end): # Exclusion range. Appends elems at 'start' i.e. at end :) if end == -1: end += L return lst[end+1:start] + elems if end == -1: end += L return lst[:start] + elems + lst[end+1:] def llListSort(lst, stride, asc): lst = fl(lst) stride = fi(stride) asc = fi(asc) lst = lst[:] # make a copy L = len(lst) broken = u'\ufb1a' > u'\U0001d41a' # that happens on Windows if stride < 1: stride = 1 if L % stride: return lst for i in xrange(0, L-stride, stride): # Optimized by caching the element in the outer loop AND after swapping. a = lst[i] ta = type(a) if ta == Vector: a = v2f(a) # list should contain vectors made only of floats a = a[0]*a[0] + a[1]*a[1] + a[2]*a[2] if lslcommon.LSO: # LSO compares bytes, not Unicode. a = a.encode('utf8') elif broken and ta in (unicode, Key): # Note this breaks type consistency between a and ta! # It should be OK because only equal types are compared. a = a.encode('utf-32-be') # pragma: no cover for j in xrange(i+stride, L, stride): b = lst[j] tb = type(b) gt = False if ta == tb: if tb == Vector: b = v2f(b) gt = not (a <= b[0]*b[0] + b[1]*b[1] + b[2]*b[2]) # (note NaNs compare as > thus the reversed condition!) elif tb != Quaternion: if lslcommon.LSO: b = b.encode('utf8') elif broken and tb in (unicode, Key): b = b.encode('utf-32-be') # pragma: no cover gt = not (a <= b) # float, integer, string, key all take this branch # (note NaNs compare as > thus the reversed condition!) if gt ^ (asc != 1): # swap lst[i:i+stride],lst[j:j+stride] = lst[j:j+stride],lst[i:i+stride] # Re-cache a = lst[i] ta = type(a) if ta == Vector: a = v2f(a) a = a[0]*a[0] + a[1]*a[1] + a[2]*a[2] if broken and ta in (unicode, Key): a = a.encode('utf-32-be') # pragma: no cover return lst def llListStatistics(op, lst): op = fi(op) lst = fl(lst) nums = [] # Extract numbers in reverse order. LIST_STAT_MEDIAN uses that. for elem in lst: if type(elem) in (int, float): nums.insert(0, float(elem)) if nums == []: return 0.0 if op == 8: # LIST_STAT_NUM_COUNT return float(len(nums)) if op in (0, 1, 2): # LIST_STAT_RANGE, LIST_STAT_MIN, LIST_STAT_MAX min = None for elem in nums: if min is None: min = max = elem else: if elem < min: min = elem if elem > max: max = elem return F32(max - min if op == 0 else min if op == 1 else max) if op == 4: # LIST_STAT_MEDIAN requires special treatment # The function behaves very strangely with NaNs. This seems to reproduce it: # llListSort seems to do the right thing with NaNs as needed by the median. nums = llListSort(nums, 1, 1) L = len(nums) if L & 1: return F32(nums[L>>1]) return F32((nums[(L>>1)-1] + nums[L>>1])*0.5) if op in (3, 5, 6, 7): # LIST_STAT_MEAN, STD_DEV, SUM, SUM_SQUARES sum = 0. sumsq = 0. mean = 0. N = 0. M2 = 0. for elem in nums: N += 1. sum += elem sumsq += elem*elem delta = elem - mean mean += delta/N M2 += delta*(elem-mean) if op == 5: # LIST_STAT_STD_DEV return 0. if N == 1. else F32(math.sqrt(M2/(N-1.))) if op == 6: # LIST_STAT_SUM return F32(sum) if op == 7: # LIST_STAT_SUM_SQUARES return F32(sumsq) return F32(mean) if op == 9: # LIST_STAT_GEOMETRIC_MEAN N = 0. GMlog = 0. for elem in nums: if elem <= 0.: return 0. N += 1. delta = math.log(elem) - GMlog GMlog += delta/N return F32(math.exp(GMlog)) return 0.0 def llLog(f): f = ff(f) if math.isinf(f) and f < 0 or math.isnan(f) or f <= 0.0: return 0.0 return F32(math.log(f)) def llLog10(f): f = ff(f) if math.isinf(f) and f < 0 or math.isnan(f) or f <= 0.0: return 0.0 return F32(math.log10(f)) def llMD5String(s, salt): s = fs(s) salt = fi(salt) return hashlib.md5(zstr(s).encode('utf8') + b':' + bytes(salt)).hexdigest().decode('utf8') def llModPow(base, exp, mod): base = fi(base) exp = fi(exp) mod = fi(mod) if not lslcommon.IsCalc: # This function has a delay, therefore it's not safe to compute it # unless in calculator mode. raise ELSLCantCompute # With some luck, this works fully with native ints on 64 bit machines. if mod in (0, 1): return 0 if exp == 0: return 1 # Convert all numbers to unsigned base &= 0xFFFFFFFF exp &= 0xFFFFFFFF mod &= 0xFFFFFFFF prod = base ret = 1 while True: if exp & 1: ret = ((ret * prod) & 0xFFFFFFFF) % mod exp = exp >> 1 if exp == 0: break prod = ((prod * prod) & 0xFFFFFFFF) % mod return S32(ret) def llParseString2List(s, exc, inc, KeepNulls=False): s = fs(s) exc = fl(exc) inc = fl(inc) if s == u'' and KeepNulls: return [s] exc = exc[:8] inc = inc[:8] regex = u'' for i in exc: if i != u'': regex += u'|' + re.escape(i) for i in inc: if i != u'': regex += u'|' + re.escape(i) if regex == u'': split = [s] else: regex = u'(' + regex[1:] + u')' split = re.split(regex, s) return [i for i in split if (KeepNulls or i != u'') and i not in exc] def llParseStringKeepNulls(s, exc, inc): return llParseString2List(s, exc, inc, KeepNulls=True) def llPow(base, exp): base = ff(base) exp = ff(exp) try: # Python corner cases and LSL corner cases differ # Python matches these two, but we don't want to get trapped by our own checks. if math.isnan(base) or math.isnan(exp): return NaN if exp == 0.0: return 1.0 if base == 0.0: # Python gives exception on these, LSL returns stuff if math.isinf(exp) and exp < 0: return Infinity # llPow(0.0, -inf) = inf if exp < 0.0: # Negative finite exponent cases if math.copysign(1, base) < 0 and exp.is_integer() and not (exp/2.).is_integer(): return -Infinity # llPow(-0.0, -odd_integer) = -inf return Infinity elif abs(base) == 1.0 and math.isinf(exp): return NaN # Python says 1.0 f = F32(math.pow(base, exp)) return 0.0 if f == 0.0 else f # don't return -0.0 except ValueError: # should happen only with negative base and noninteger exponent return Indet def llRot2Angle(r): r = q2f(r) # Used by llAngleBetween. # Version based on research by Moon Metty, Miranda Umino and Strife Onizuka return F32(2.*math.atan2(math.sqrt(math.fsum((r[0]*r[0], r[1]*r[1], r[2]*r[2]))), abs(r[3]))); def llRot2Axis(r): r = q2f(r) if r[3] < 0: return llVecNorm(Vector((-r[0], -r[1], -r[2]))) return llVecNorm(Vector((r[0], r[1], r[2]))) def llRot2Euler(r): r = q2f(r) # Another one of the hardest. The formula for Z angle in the # singularity case was inspired by the viewer code. r = qnorm(r) y = 2*(r[0]*r[2] + r[1]*r[3]) # Check gimbal lock condition if abs(y) > 0.99999: return Vector(F32((0., math.asin(1. if y > 1. else y), math.atan2(r[2]*r[3]+r[0]*r[1], .5-(r[0]*r[0]+r[2]*r[2])) ))) qy2 = r[1]*r[1] return Vector(F32(( math.atan2(r[0]*r[3]-r[1]*r[2], .5-(r[0]*r[0]+qy2)), math.asin(y), math.atan2(r[2]*r[3]-r[0]*r[1], .5-(r[2]*r[2]+qy2)) ))) def llRot2Fwd(r): r = q2f(r) v = Vector((1., 0., 0.)) return llVecNorm(mul(v, qnz(r), f32=False)) def llRot2Left(r): r = q2f(r) v = Vector((0., 1., 0.)) return llVecNorm(mul(v, qnz(r), f32=False)) def llRot2Up(r): r = q2f(r) v = Vector((0., 0., 1.)) return llVecNorm(mul(v, qnz(r), f32=False)) def llRotBetween(v1, v2): v1 = v2f(v1) v2 = v2f(v2) # Loosely based on the "Bad" reference implementation and # on SL source code (pre Moon Metty's changes). # See v1 = llVecNorm(v1) v2 = llVecNorm(v2) dot = mul(v1, v2) axis = mod(v1, v2) threshold = float.fromhex('0x1.fffffcp-1') if -threshold <= dot <= threshold: # non-aligned - their cross product is a good axis m = math.sqrt(mul(axis, axis) + (dot + 1.) * (dot + 1.)) return Quaternion(F32((axis[0] / m, axis[1] / m, axis[2] / m, (dot + 1.) / m))) # about aligned - two cases to deal with if dot > 0.: # same signs return Quaternion((0., 0., 0., 1.)) # opposite signs - find one vector in the plane perpendicular to # either vector, to use as axis. We do this by choosing an arbitrary # vector (<1,0,0> in our case), and calculating the cross product with it, # which will be perpendicular to both. But matching the SL results requires # another cross product of the input with the result, so we do that. ortho = mod(mod(v1, Vector((1., 0., 0.))), v1) ortho = Vector((0. if f == 0. else f for f in ortho)) # remove minus zero m = mul(ortho, ortho) if m < float.fromhex('0x1.b7cdfep-34'): # The input vectors were aligned with <1,0,0>, so this was not a # good choice. Return 180 deg. rotation over Z instead. return Quaternion((0., 0., 1., 0.)) m = math.sqrt(m) return Quaternion(F32((ortho[0] / m, ortho[1] / m, ortho[2] / m, 0.))) def llRound(f): f = ff(f) if math.isnan(f) or math.isinf(f) or f >= 2147483647.5 or f < -2147483648.0: return -2147483648 return int(math.floor(F32(f+0.5))) def llSHA1String(s): s = fs(s) return hashlib.sha1(s.encode('utf8')).hexdigest().decode('utf8') def llSin(f): f = ff(f) if math.isinf(f): return Indet if -9223372036854775808.0 < f < 9223372036854775808.0: return F32(math.sin(reduce(f))) return f def llSqrt(f): f = ff(f) if f < 0.0: return Indet # LSL and Python both produce -0.0 when the input is -0.0. return F32(math.sqrt(f)) def llStringLength(s): s = fs(s) return len(s) def llStringToBase64(s): s = fs(s) return b64encode(s.encode('utf8')).decode('utf8') def llStringTrim(s, mode): s = fs(s) mode = fi(mode) head = 0 length = len(s) tail = length-1 if mode & 1: # STRING_TRIM_HEAD while head < length and s[head] in u'\x09\x0a\x0b\x0c\x0d\x20': head += 1 if mode & 2: # STRING_TRIM_TAIL while tail >= head and s[tail] in u'\x09\x0a\x0b\x0c\x0d\x20': tail -= 1 return s[head:tail+1] def llSubStringIndex(s, pattern): s = fs(s) pattern = fs(pattern) return s.find(pattern) def llTan(f): f = ff(f) if math.isinf(f): return Indet if -9223372036854775808.0 < f < 9223372036854775808.0: return F32(math.tan(reduce(f))) return f def llToLower(s): s = fs(s) if lslcommon.LSO: return zstr(re.sub(u'[A-Z]', lambda x: x.group().lower(), s)) return zstr(s.lower()) def llToUpper(s): s = fs(s) if lslcommon.LSO: return zstr(re.sub(u'[a-z]', lambda x: x.group().upper(), s)) return zstr(s.upper()) def llUnescapeURL(s): s = fs(s) ret = b'' L = len(s) i = 0 while i < L: c = s[i] i += 1 if c != u'%': ret += c.encode('utf8') continue if i >= L: break c = s[i] # First digit i += 1 if i >= L: break v = 0 if u'0' <= c <= u'9' or u'A' <= c <= u'F' or u'a' <= c <= u'f': v = int(c, 16)<<4 c = s[i] # Second digit if c == u'%': ret += chr(v) i += 1 continue i += 1 if u'0' <= c <= u'9' or u'A' <= c <= u'F' or u'a' <= c <= u'f': v += int(c, 16) ret += chr(v) return InternalUTF8toString(ret) def llVecDist(v1, v2): v1 = v2f(v1) v2 = v2f(v2) # For improved accuracy, do the intermediate calcs as doubles vx = v1[0]-v2[0] vy = v1[1]-v2[1] vz = v1[2]-v2[2] return F32(math.sqrt(math.fsum((vx*vx, vy*vy, vz*vz)))) def llVecMag(v): v = v2f(v) return F32(math.sqrt(math.fsum((v[0]*v[0], v[1]*v[1], v[2]*v[2])))) def llVecNorm(v, f32 = True): v = v2f(v) if v == ZERO_VECTOR: return v f = math.sqrt(math.fsum((v[0]*v[0], v[1]*v[1], v[2]*v[2]))) return F32(Vector((v[0]/f,v[1]/f,v[2]/f)), f32) def llXorBase64(s, xor): s = fs(s) xor = fs(xor) # Xor the underlying bytes. if xor == u'': return s s = b64_re.search(s).group(0) L1 = len(s) xor = b64_re.search(xor).group(0) L2 = len(xor) if L2 == 0: # The input xor string starts with zero or one valid Base64 characters. # This produces garbage bytes (the first byte is zero though). if L1 > 2: # We don't produce a result in this case. raise ELSLCantCompute L2 = 2 xor = u'AA' s = b64decode(s + u'=' * (-L1 & 3)) xor = b64decode(xor + u'=' * (-L2 & 3)) L2 = len(xor) i = 0 ret = b'' Bug3763 = 3763 in Bugs # BUG-3763 consists of the binary string having an extra NULL every time after the second repetition of # the XOR pattern. For example, if the XOR binary string is b'pqr' and the input string is # b'12345678901234567890', the XOR binary string behaves as if it was b'pqrpqr\0pqr\0pqr\0pqr\0pq'. # We emulate that by adding the zero and increasing the length the first time. for c in s: ret += chr(ord(c) ^ ord(xor[i])) i += 1 if i >= L2: i = 0 if Bug3763: Bug3763 = False xor = xor + b'\x00' L2 += 1 return b64encode(ret).decode('utf8') def llXorBase64Strings(s, xor): s = fs(s) xor = fs(xor) if not lslcommon.IsCalc: # This function has a delay, therefore it's not safe to compute it # unless in calculator mode. raise ELSLCantCompute if xor == u'': return s B64 = u'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' # Special case when the first character is not a Base64 one. (LL's ways are inextricable) base = B64.find(xor[0]) if base < 0: if xor[0] == u'=': xor = u'+' + xor[1:] base = 62 else: xor = u'/' + xor[1:] base = 63 ret = u'' i = 0 L = len(xor) for c1 in s: val1 = B64.find(c1) val2 = B64.find(xor[i]) i += 1 if i >= L: i = 0 if val1 < 0: ret += u'=' else: if val2 < 0: val2 = base i = 1 ret += B64[val1 ^ val2] return ret def llXorBase64StringsCorrect(s, xor): s = fs(s) xor = fs(xor) # Xor the underlying bytes but repeating the xor parameter pattern at the first zero (SCR-35). if xor == u'': return s s = b64_re.search(s).group(0) L1 = len(s) xor = b64_re.search(xor).group(0) L2 = len(xor) if L2 == 0: # The input xor string starts with zero or one valid Base64 characters. # This produces garbage bytes (the first byte is zero though). if L1 > 2: # We don't produce a result in this case. raise ELSLCantCompute L2 = 2 xor = u'AA' s = b64decode(s + u'=' * (-L1 & 3)) xor = b64decode(xor + u'=' * (-L2 & 3)) + b'\x00' i = 0 ret = b'' for c in s: ret += chr(ord(c) ^ ord(xor[i])) i += 1 if xor[i] == b'\x00': i = 0 return b64encode(ret).decode('utf8')