LSL-PyOptimizer/lslopt/lslfoldconst.py
Sei Lisa 6f32b4710a Remove handling of corner cases that we decided to not support
There was some remaining code trying to deal with labels in the single statement part of IFs and FORs.
2018-12-26 19:25:11 +01:00

1983 lines
85 KiB
Python

# (C) Copyright 2015-2018 Sei Lisa. All rights reserved.
#
# This file is part of LSL PyOptimizer.
#
# LSL PyOptimizer is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# LSL PyOptimizer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with LSL PyOptimizer. If not, see <http://www.gnu.org/licenses/>.
# Constant folding and simplification of expressions and statements.
import lslcommon
from lslcommon import Vector, Quaternion, warning, nr
import lslfuncs
from lslfuncs import ZERO_VECTOR, ZERO_ROTATION
import math
from lslfuncopt import OptimizeFunc, OptimizeArgs, FuncOptSetup
# TODO: Remove special handling of @ within IF,WHILE,FOR,DO
class foldconst(object):
def isLocalVar(self, node):
name = node.name
scope = node.scope
return (self.symtab[scope][name]['Kind'] == 'v'
and 'Loc' not in self.symtab[scope][name])
def GetListNodeLength(self, node):
"""Get the length of a list that is expressed as a CONST, LIST or CAST
node, or False if it can't be determined.
"""
assert node.t == 'list'
nt = node.nt
if nt == 'CAST':
if node.ch[0].t == 'list':
return self.GetListNodeLength(node.ch[0])
return 1
if nt == 'CONST': # constant list
return len(node.value)
if nt == 'LIST': # list constructor
return len(node.ch)
return False
def GetListNodeElement(self, node, index):
"""Get an element of a list expressed as a CONST, LIST or CAST node.
If the index is out of range, return False; otherwise the result can be
either a node or a constant.
"""
assert node.t == 'list'
nt = node.nt
if nt == 'CAST':
# (list)list_expr should have been handled in CAST
assert node.ch[0].t != 'list'
if index == 0 or index == -1:
return node.ch[0]
return False
if nt == 'CONST':
try:
return node.value[index]
except IndexError:
pass
return False
if nt == 'LIST':
try:
return node.ch[index]
except IndexError:
return False
return False
def ConstFromNodeOrConst(self, nodeOrConst):
"""Return the constant if the value is a node and represents a constant,
or if the value is directly a constant, and False otherwise.
"""
if type(nodeOrConst) == nr:
if nodeOrConst.nt == 'CONST':
return nodeOrConst.value
return False
return nodeOrConst
def TypeFromNodeOrConst(self, nodeOrConst):
"""Return the LSL type of a node or constant."""
if nodeOrConst is False:
return False
if type(nodeOrConst) == nr:
return nodeOrConst.t
return lslcommon.PythonType2LSL[type(nodeOrConst)]
def FoldAndRemoveEmptyStmts(self, lst):
"""Utility function for elimination of useless expressions in FOR"""
idx = 0
while idx < len(lst):
self.FoldTree(lst, idx)
self.FoldStmt(lst, idx)
# If eliminated, it must be totally removed. A ';' won't do.
if lst[idx].nt == ';':
del lst[idx]
else:
idx += 1
def CompareTrees(self, node1, node2):
"""Try to compare two subtrees to see if they are equivalent.
Returns True if they are."""
# They MUST be SEF and stable.
if not node1.SEF or not node2.SEF:
return False
if node1.t != node2.t:
return False
# It's not complete yet.
nt1 = node1.nt
if nt1 == node2.nt:
if (nt1 == 'IDENT'
and node1.name == node2.name
and node1.scope == node2.scope
):
return True
if (nt1 == 'FNCALL'
and node1.name == node2.name
and 'uns' not in self.symtab[0][node1.name]
and all(self.CompareTrees(node1.ch[i],
node2.ch[i])
for i in xrange(len(node1.ch)))
):
return True
if (nt1 == 'CAST'
and self.CompareTrees(node1.ch[0], node2.ch[0])
):
return True
if nt1 == 'CONST' and node1.value == node2.value:
return True
if (nt1 in ('!', '~', 'NEG')
and self.CompareTrees(node1.ch[0], node2.ch[0])
):
return True
if (nt1 in self.binary_ops
and self.CompareTrees(node1.ch[0], node2.ch[0])
and self.CompareTrees(node1.ch[1], node2.ch[1])
):
return True
if ((nt1 in ('*', '^', '&', '|', '==') # commutative
or nt1 == '+'
and node1.ch[0].t not in ('list', 'string')
and node2.ch[0].t not in ('list', 'string')
)
and self.CompareTrees(node1.ch[0], node2.ch[1])
and self.CompareTrees(node1.ch[1], node2.ch[0])
):
return True
return False
def FnSEF(self, node):
'''Applied to function call nodes, return whether the node corresponds
to a SEF function.
'''
assert node.nt == 'FNCALL'
sym = self.symtab[0][node.name]
return 'SEF' in sym and sym['SEF'] is True
def FoldStmt(self, parent, index):
"""Simplify a statement."""
node = parent[index]
# If the statement is side-effect-free, remove it as it does nothing.
if node.SEF:
# When a statement is side-effect free, it does nothing except
# wasting CPU, and can thus be removed without affecting the
# program. But side effect freedom is propagated from the
# constituents of the statement, e.g. function calls in expressions
# or substatements in FOR, or even individual variables.
#
# Many library functions like llSameGroup or llGetVel() are
# side-effect free. Many other functions like llSleep() or
# llSetScale() are not. User functions may or may not be.
#
# Assignments do have side effects, except those of the form x = x.
# Pre- and post-increment and decrement also have side effects.
# Other unary and binary operators are side effect-free.
parent[index] = nr(nt=';', t=None, SEF=True)
return
if node.nt == 'EXPR':
node = node.ch[0]
# Post-increments take more space than pre-increments.
if node.nt in ('V++', 'V--'):
node.nt = '++V' if node.nt == 'V++' else '--V';
# Function calls are SEF if both the function and the args are SEF.
# If the statement is a function call and the function is marked as SEF
# at this point, it means the arguments are not SEF. Replace the node
# in that case with a block of expressions.
if (node.nt == 'FNCALL' and 'Loc' in self.symtab[0][node.name]
and self.FnSEF(node)
):
parent[index] = nr(nt='{}', t=None, ch=[
nr(nt='EXPR', t=x.t, ch=[x]) for x in node.ch])
self.FoldTree(parent, index)
return
def ExpandCondition(self, parent, index):
"""IF, FOR, WHILE and DO...WHILE conditions accept several types, not
just integer. However, leaving them as-is generates longer code than if
we expand them and let the optimizer optimize, for float, vector and
rotation, and no matter the optimization in the case of list.
"""
ctyp = parent[index].t
# Under LSO, this would break the fact that 1-element lists count as
# false, so we don't do it for LSO lists.
if (ctyp in ('float', 'vector', 'rotation', 'string')
or ctyp == 'list' and not lslcommon.LSO
):
parent[index] = nr(nt='!=', t='integer', ch=[parent[index],
nr(nt='CONST', t=ctyp, value=0.0 if ctyp == 'float'
else ZERO_VECTOR if ctyp == 'vector'
else ZERO_ROTATION if ctyp == 'rotation'
else u"" if ctyp == 'string'
else [])])
parent[index].SEF = parent[index].ch[0].SEF
def IsBool(self, node):
"""Some operators return 0 or 1, and that allows simplification of
boolean expressions. This function returns whether we know for sure
that the result is boolean.
"""
nt = node.nt
if (nt in ('<', '!', '>', '<=', '>=', '==', '||', '&&')
or nt == '!=' and node.ch[0].t != 'list'
or nt == '&' and any(self.IsBool(node.ch[i]) for i in (0, 1))
or nt in ('|', '^', '*')
and all(self.IsBool(node.ch[i]) for i in (0, 1))
or nt == 'CONST' and node.t == 'integer' and node.value in (0, 1)
):
return True
if nt == 'FNCALL':
sym = self.symtab[0][node.name]
if (sym['Type'] == 'integer' and 'min' in sym and 'max' in sym
and sym['min'] >= 0 and sym['max'] <= 1
):
return True
return False
def IsAndBool(self, node):
"""For bitwise AND, in some cases we can relax the condition to this:
when bit 0 is 0, all other bits are guaranteed to be 0 as well. That's
the case of -bool, which is the only case we deal with here, but an
important one because we generate it as an intermediate result in some
operations.
"""
return (node.nt == 'NEG' and self.IsBool(node.ch[0])
or self.IsBool(node))
def FoldCond(self, parent, index, ParentIsNegation = False):
"""When we know that the parent is interested only in the truth value
of the node, we can perform further optimizations. This function deals
with them.
"""
node = parent[index]
nt = node.nt
if nt in ('CONST', 'IDENT', 'FLD'):
if node.nt == 'CONST':
node.t = 'integer'
node.value = 1 if lslfuncs.cond(node.value) else 0
return # Nothing to do if it's already simplified.
child = node.ch
if nt == 'FNCALL' and 'strlen' in self.symtab[0][node.name]:
# llStringLength(expr) -> !(expr == "")
# new node is SEF if the argument to llStringLength is
node = nr(nt='==', t='integer', SEF=child[0].SEF,
ch=[child[0],
nr(nt='CONST', t='string', value=u'', SEF=True)
])
node = nr(nt='!', t='integer', ch=[node], SEF=child[0].SEF)
parent[index] = node
nt = '!'
child = node.ch
# fall through to keep optimizing if necessary
if nt == '!':
self.FoldCond(child, 0, True)
if child[0].nt == '!':
# bool(!!a) equals bool(a)
parent[index] = child[0].ch[0]
return
if (child[0].nt == '==' and child[0].ch[0].t == 'integer'
and child[0].ch[1].t == 'integer'
):
# We have !(int == int). Replace with int ^ int or with int - 1
node = parent[index] = child[0] # remove the negation
child = child[0].ch
if (child[0].nt == 'CONST' and child[0].value == 1
or child[1].nt == 'CONST' and child[1].value == 1
):
# a != 1 -> a - 1 (which FoldTree will transform to ~-a)
node.nt = '-'
else:
# This converts != to ^; FoldTree will simplify ^-1 to ~
# and optimize out ^0.
node.nt = '^'
self.FoldTree(parent, index)
return
if (child[0].nt == '&'
and any(child[0].ch[i].nt == '!'
and self.IsAndBool(child[0].ch[1-i]) for i in (0, 1))
):
# We can remove at least one !
child[0].nt = '|'
for i in (0, 1):
child[0].ch[i] = nr(nt='!', t='integer',
ch=[child[0].ch[i]], SEF=child[0].ch[i].SEF)
parent[index] = child[0]
self.FoldTree(parent, index)
self.FoldCond(parent, index)
return
if nt == 'NEG':
# bool(-a) equals bool(a)
parent[index] = child[0]
self.FoldCond(parent, index, ParentIsNegation)
return
if nt in self.binary_ops and child[0].t == child[1].t == 'integer':
if nt == '==':
if (child[0].nt == 'CONST' and -1 <= child[0].value <= 1
or child[1].nt == 'CONST' and -1 <= child[1].value <= 1
):
# Transform a==b into !(a-b) if either a or b are in [-1,1]
parent[index] = nr(nt='!', t='integer', ch=[node])
node.nt = '-'
self.FoldTree(parent, index)
return
if nt == '|':
# In a boolean context, the operands count as booleans.
self.FoldCond(child, 0)
self.FoldCond(child, 1)
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b] if present
if child[b].nt != 'CONST':
a, b = 1, 0
if child[b].nt == 'CONST' and child[b].value and child[a].SEF:
node = parent[index] = child[b]
node.value = -1
return
del a, b
# Specific optimization to catch a frequent bitwise test.
# If b and c are constant powers of two:
# !(a & b) | !(a & c) -> ~(a|~(b|c))
# e.g. if (a & 4 && a & 8) -> if (!~(a|-13))
if (child[0].nt == '!' and child[0].ch[0].nt == '&'
and child[1].nt == '!' and child[1].ch[0].nt == '&'
):
and1 = child[0].ch[0].ch
and2 = child[1].ch[0].ch
a, b, c, d = 0, 1, 0, 1
if and1[b].nt != 'CONST':
a, b = b, a
if and2[d].nt != 'CONST':
c, d = d, c
if and1[b].nt == and2[d].nt == 'CONST':
val1 = and1[b].value
val2 = and2[d].value
if (val1 and val2
# power of 2
and (val1 & (val1 - 1) & 0xFFFFFFFF) == 0
and (val2 & (val2 - 1) & 0xFFFFFFFF) == 0
and self.CompareTrees(and1[a], and2[c])
):
# Check passed
child[0] = and1[a]
child[1] = and1[b]
child[1].value = ~(val1 | val2)
parent[index] = nr(nt='~', t='integer', ch=[node],
SEF=node.SEF)
self.FoldCond(parent, index, ParentIsNegation)
return
del val1, val2
del a, b, c, d, and1, and2
# Absorb further flags, to allow chaining of &&
# If ~r and s are constants, and s is a power of two:
# (!~(x|~r) && x&s) -> !~(x|(~r&~s))
# This is implemented as:
# ~(x|~r) | !(x&s) -> ~(x|~(r|s))
# since that's the intermediate result after conversion of &&.
# a and b are going to be the children of the main |
# a is going to be child that has the ~
# b is the other child (with the !)
# c is the child of ~ which has x
# d is the child of ~ with the constant ~r
# e is the child of ! which has x
# f is the child of ! with the constant s
a, b = 0, 1
if child[a].nt != '~':
a, b = b, a
c, d = 0, 1
if child[a].nt == '~' and child[a].ch[0].nt == '|':
if child[a].ch[0].ch[d].nt != 'CONST':
c, d = d, c
e, f = 0, 1
if child[b].nt == '!' and child[b].ch[0].nt == '&':
if child[b].ch[0].ch[f].nt != 'CONST':
e, f = f, e
# All pointers are ready to check applicability.
if (child[a].nt == '~' and child[a].ch[0].nt == '|'
and child[b].nt == '!' and child[b].ch[0].nt == '&'
):
ch1 = child[a].ch[0].ch
ch2 = child[b].ch[0].ch
if (ch1[d].nt == 'CONST' and ch2[f].nt == 'CONST'
and (ch2[f].value & (ch2[f].value - 1)
& 0xFFFFFFFF) == 0
):
if self.CompareTrees(ch1[c], ch2[e]):
# We're in that case. Apply optimization.
parent[index] = child[a]
ch1[d].value &= ~ch2[f].value
return
del ch1, ch2
del a, b, c, d, e, f
# Check if the operands are a negation ('!') or can be inverted
# without adding more than 1 byte and are boolean.
# We only support '<' and some cases of '&' (are there more?)
Invertible = [False, False]
for a in (0, 1):
Invertible[a] = child[a].nt == '!'
if (child[a].nt == '<'
and child[a].ch[0].t == child[a].ch[1].t == 'integer'
):
if (child[a].ch[0].nt == 'CONST'
and child[a].ch[0].value != 2147483647
or child[a].ch[1].nt == 'CONST'
and child[a].ch[1].value != int(-2147483648)
):
Invertible[a] = True
# Deal with our optimization of a<0 -> a&0x80000000
# (see below)
if child[a].nt == '&' and (
child[a].ch[0].nt == 'CONST'
and child[a].ch[0].value == int(-2147483648)
or child[a].ch[1].nt == 'CONST'
and child[a].ch[1].value == int(-2147483648)
):
Invertible[a] |= ParentIsNegation
if (Invertible[0] or Invertible[1]) and ParentIsNegation:
# !(!a|b) -> a&-!b or a&!b
# This deals with the part after the first !, transforming
# it into (!a|!!b) so that the outer node can optimize the
# negated version to a simple &.
for a in (0, 1):
if not Invertible[a]:
child[a] = nr(nt='!', t='integer',
ch=[nr(nt='!', t='integer', ch=[child[a]])]
)
Invertible[a] = True
if Invertible[0] and Invertible[1]:
# Both operands are negated, or negable.
# Make them a negation if they aren't already.
for a in (0, 1):
if child[a].nt == '<':
if child[a].ch[0].nt == 'CONST':
child[a].ch[0].value += 1
else:
child[a].ch[1].value -= 1
child[a].ch[0], child[a].ch[1] = \
child[a].ch[1], child[a].ch[0]
child[a] = nr(nt='!', t='integer', ch=[child[a]])
elif child[a].nt == '&':
child[a] = nr(nt='!', t='integer',
ch=[nr(nt='!', t='integer', ch=[child[a]])]
)
self.FoldTree(child[a].ch, 0)
# If they are boolean, the expression can be turned into
# !(a&b) which hopefully will have a ! uptree if it came
# from a '&&' and cancel out (if not, we still remove one
# ! so it's good). If one is bool, another transformation
# can be performed: !nonbool|!bool -> !(nonbool&-bool)
# which is still a gain.
# Deal with operands in any order
a, b = 0, 1
# Put the bool in child[b].ch[0].
if not self.IsBool(child[b].ch[0]):
a, b = 1, 0
if self.IsBool(child[b].ch[0]):
if not self.IsAndBool(child[a].ch[0]):
child[b].ch[0] = nr(nt='NEG', t='integer',
ch=[child[b].ch[0]])
node = parent[index] = nr(nt='!', t='integer',
ch=[nr(nt='&', t='integer',
ch=[child[0].ch[0], child[1].ch[0]])
], SEF=child[0].ch[0].SEF and child[1].ch[0].SEF)
# Fold the node we've just synthesized
self.FoldTree(parent, index)
return
if nt == '<' and child[0].t == child[1].t == 'integer':
sym = None
for a in (0, 1):
if child[a].nt == 'FNCALL':
sym = self.symtab[0][child[a].name]
break
# cond(FNCALL < 0) -> cond(~FNCALL) if min == -1
if (child[1].nt == 'CONST' and child[1].value == 0
and child[0].nt == 'FNCALL'
and 'min' in sym and sym['min'] == -1
):
node = parent[index] = nr(nt='~', t='integer',
ch=[child[0]])
self.FoldTree(parent, index)
return
# cond(FNCALL > -1) -> cond(!~FNCALL) if min == -1
if (child[0].nt == 'CONST' and child[0].value == -1
and child[1].nt == 'FNCALL'
and 'min' in sym and sym['min'] == -1
):
node = parent[index] = nr(nt='!', t='integer',
ch=[nr(nt='~', t='integer', ch=[child[1]])])
self.FoldTree(parent, index)
return
# cond(FNCALL < 1) -> cond(!FNCALL) if min == 0
if (child[1].nt == 'CONST' and child[1].value == 1
and child[0].nt == 'FNCALL'
and 'min' in sym and sym['min'] == 0
):
node = parent[index] = nr(nt='!', t='integer',
ch=[child[0]])
self.FoldTree(parent, index)
return
# cond(FNCALL > 0) -> cond(FNCALL) if min == 0
if (child[0].nt == 'CONST' and child[0].value == 0
and child[1].nt == 'FNCALL'
and 'min' in sym and sym['min'] == 0
):
node = parent[index] = child[1]
self.FoldTree(parent, index)
return
if nt == '&':
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b], if present
if child[b].nt != 'CONST':
a, b = 1, 0
if (child[b].nt == 'CONST'
and child[b].value == int(-2147483648)
and child[a].nt == 'FNCALL'
):
sym = self.symtab[0][child[a].name]
if 'min' in sym and sym['min'] == -1:
node = parent[index] = nr(nt='~', t='integer',
ch=[child[a]])
self.FoldTree(parent, index)
return
def CopyNode(self, node):
'''Deep copy of a node'''
ret = node.copy()
if ret.ch:
ret.ch = [self.CopyNode(subnode) for subnode in ret.ch]
return ret
def FoldTree(self, parent, index):
"""Recursively traverse the tree to fold constants, changing it in
place.
Also optimizes away IF, WHILE, etc.
"""
node = parent[index]
nt = node.nt
child = node.ch
if nt == 'CONST':
# Job already done. But mark as side-effect free.
node.SEF = True
return
if nt == 'CAST':
self.FoldTree(child, 0)
node.SEF = child[0].SEF
if child[0].nt == 'CONST':
# Enable key constants. We'll typecast them back on output, but
# this enables some optimizations.
#if node.t != 'key': # key constants not possible
parent[index] = nr(nt='CONST', t=node.t, SEF=True,
value=lslfuncs.typecast(
child[0].value, lslcommon.LSLType2Python[node.t]))
# Remove casts of a type to the same type (NOP in Mono)
# This is not an optimization by itself, but it simplifies the job,
# by not needing to look into nested casts like (key)((key)...)
while node.nt == 'CAST' and child[0].t == node.t:
parent[index] = node = child[0]
if node.ch is None:
break
child = node.ch
return
if nt == 'NEG':
self.FoldTree(child, 0)
node.SEF = child[0].SEF
if child[0].nt == '+' and any(child[0].ch[i].nt == 'NEG'
for i in (0, 1)):
node = parent[index] = child[0]
child = node.ch
for a in (0, 1):
if child[a].nt == 'NEG':
child[a] = child[a].ch[0]
else:
child[a] = nr(nt='NEG', t=child[a].t, ch=[child[a]],
SEF=child[a].SEF)
self.FoldTree(child, a)
return
if child[0].nt == 'NEG':
# Double negation: - - expr -> expr
node = parent[index] = child[0].ch[0]
child = node.ch
elif child[0].nt == 'CONST':
node = parent[index] = child[0]
node.value = lslfuncs.neg(node.value)
child = None
if child and node.nt == 'NEG' and child[0].nt == '~':
track = child[0].ch[0]
const = 1
while track.nt == 'NEG' and track.ch[0].nt == '~':
const += 1
track = track.ch[0].ch[0]
if const > 2:
# -~-~-~expr -> expr+3
node = nr(nt='CONST', t='integer', SEF=True, value=const)
node = nr(nt='+', t='integer', ch=[node, track],
SEF=track.SEF)
parent[index] = node
return
if nt == '!':
self.FoldTree(child, 0)
self.FoldCond(child, 0, True)
# !! does *not* cancel out (unless in cond)
subexpr = child[0]
snt = subexpr.nt
node.SEF = subexpr.SEF
if snt == 'CONST':
node = parent[index] = subexpr
node.value = int(not node.value)
return
if snt == '<':
lop = subexpr.ch[0]
rop = subexpr.ch[1]
if (lop.nt == 'CONST' and lop.t == rop.t == 'integer'
and lop.value < 2147483647
):
lop.value += 1
subexpr.ch[0], subexpr.ch[1] = subexpr.ch[1], subexpr.ch[0]
parent[index] = subexpr # remove the !
return
if (rop.nt == 'CONST' and lop.t == rop.t == 'integer'
and rop.value > int(-2147483648)
):
rop.value -= 1
subexpr.ch[0], subexpr.ch[1] = subexpr.ch[1], subexpr.ch[0]
parent[index] = subexpr # remove the !
return
if snt == '&':
a, b = 0, 1
if subexpr.ch[b].nt != 'CONST':
a, b = 1, 0
if (subexpr.ch[b].nt == 'CONST'
and subexpr.ch[b].value == int(-2147483648)
):
# !(i & 0x80000000) -> -1 < i (because one of our
# optimizations can be counter-productive, see FoldCond)
subexpr.nt = '<'
subexpr.ch[b].value = -1
subexpr.ch = [subexpr.ch[b], subexpr.ch[a]]
parent[index] = subexpr
return
if snt == '!=' or snt == '^' or snt == '-' or snt == '+':
if snt == '+':
# Change !(x + y) -> -x == y, and make another pass
# to get rid of the signs where possible
subexpr.ch[0] = nr(nt='NEG', t='integer',
ch=[subexpr.ch[0]], SEF=subexpr.ch[0].SEF)
subexpr.nt = '=='
parent[index] = subexpr
self.FoldTree(parent, index)
return
return
if nt == '~':
self.FoldTree(child, 0)
subexpr = child[0]
node.SEF = subexpr.SEF
if child[0].nt == 'NEG':
track = child[0].ch[0]
const = -1
while track.nt == '~' and track.ch[0].nt == 'NEG':
const -= 1
track = track.ch[0].ch[0]
if const < -2:
# ~-~-~-expr -> expr + (-3)
node = nr(nt='CONST', t='integer', SEF=True, value=const)
node = nr(nt='+', t='integer', ch=[node, track],
SEF=track.SEF)
parent[index] = node
self.FoldTree(parent, index)
return
if subexpr.nt == '~':
# Double negation: ~~expr
parent[index] = subexpr.ch[0]
elif subexpr.nt == 'CONST':
node = parent[index] = child[0]
node.value = ~node.value
return
if nt in self.binary_ops:
# RTL evaluation
self.FoldTree(child, 1)
self.FoldTree(child, 0)
# Node is SEF if both sides are side-effect free.
node.SEF = child[0].SEF and child[1].SEF
optype = node.t
lval = child[0]
ltype = lval.t
lnt = lval.nt
rval = child[1]
rtype = rval.t
rnt = rval.nt
if lnt == rnt == 'CONST':
op1 = lval.value
op2 = rval.value
if nt == '+':
if ltype == rtype == 'string' and not self.addstrings:
return
result = lslfuncs.add(op1, op2)
elif nt == '-':
result = lslfuncs.sub(op1, op2)
elif nt == '*':
result = lslfuncs.mul(op1, op2)
elif nt == '/':
try:
result = lslfuncs.div(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '%':
try:
result = lslfuncs.mod(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '<<':
result = lslfuncs.S32(op1 << (op2 & 31))
elif nt == '>>':
result = lslfuncs.S32(op1 >> (op2 & 31))
elif nt == '==' or nt == '!=':
result = lslfuncs.compare(op1, op2, Eq = (nt == '=='))
elif nt in ('<', '<=', '>', '>='):
if nt in ('>', '<='):
result = lslfuncs.less(op2, op1)
else:
result = lslfuncs.less(op1, op2)
if nt in ('>=', '<='):
result = 1 - result
elif nt == '|':
result = op1 | op2
elif nt == '^':
result = op1 ^ op2
elif nt == '&':
result = op1 & op2
elif nt == '||':
result = int(bool(op1) or bool(op2))
elif nt == '&&':
result = int(bool(op1) and bool(op2))
else:
assert False, 'Internal error: Operator not found: ' + nt # pragma: no cover
parent[index] = nr(nt='CONST', t=node.t, SEF=True, value=result)
return
# Simplifications for particular operands
if nt == '-':
if optype in ('vector', 'rotation'):
if lnt == 'CONST' and all(component == 0
for component in lval.value):
# Change <0,0,0[,0]>-expr -> -expr
parent[index] = nr(nt='NEG', t=node.t, ch=[rval],
SEF=rval.SEF)
elif rnt == 'CONST' and all(component == 0
for component in rval.value):
# Change expr-<0,0,0[,0]> -> expr
parent[index] = lval
return
# Change - to + - for int/float
nt = node.nt = '+'
if child[1].nt == 'CONST':
rval.value = lslfuncs.neg(rval.value)
else:
rnt = 'NEG'
rval = child[1] = nr(nt=rnt, t=rval.t, ch=[rval],
SEF=rval.SEF)
self.FoldTree(child, 1)
# rtype unchanged
# Fall through to simplify it as '+'
if nt == '+':
# Tough one. Remove neutral elements for the various types,
# and more.
# expr + -expr -> 0
# -expr + expr -> 0
if (child[0].nt == 'NEG'
and self.CompareTrees(child[0].ch[0], child[1])
or child[1].nt == 'NEG'
and self.CompareTrees(child[1].ch[0], child[0])
):
parent[index] = nr(nt='CONST', t='integer', value=0,
SEF=True)
return
# Addition of integers, strings, and lists is associative.
# Addition of floats, vectors and rotations would be, except
# for FP precision.
# TODO: associative addition of lists
# Associative lists are trickier, because unlike the others,
# the types of the operands may not be lists
# so e.g. list+(integer+integer) != (list+integer)+integer.
if optype == 'integer' or optype == 'string' and self.addstrings:
if lnt == '+' and rnt == 'CONST' and lval.ch[1].nt == 'CONST':
# (var + ct1) + ct2 -> var + (ct1 + ct2)
child[1] = nr(nt='+', t=optype, ch=[lval.ch[1], rval],
SEF=True)
lval = child[0] = lval.ch[0]
lnt = lval.nt
ltype = lval.t
rtype = optype
# Fold the RHS again now that we have it constant
self.FoldTree(child, 1)
rval = child[1]
rnt = rval.nt
if optype == 'list' and not (ltype == rtype == 'list'):
if lnt == 'CONST' and not lval.value:
# [] + nonlist -> (list)nonlist
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index].SEF = rval.SEF
return
if optype in ('vector', 'rotation'):
# not much to do with vectors or quaternions either
if lnt == 'CONST' and all(x == 0 for x in lval.value):
# Change <0,0,0[,0]>+expr -> expr
parent[index] = rval
elif rnt == 'CONST' and all(x == 0 for x in rval.value):
# Change expr+<0,0,0[,0]> -> expr
parent[index] = lval
return
# Can't be key, as no combo of addition operands returns key
assert optype != 'key'
if optype in ('string', 'float', 'list'):
# All these types evaluate to boolean False when they are
# the neutral addition element.
if lnt == 'CONST' and not lval.value:
# 0. + expr -> expr
# "" + expr -> expr
# [] + expr -> expr
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index].SEF = rval.SEF
return
if rnt == 'CONST' and not rval.value:
# expr + 0. -> expr
# expr + "" -> expr
# expr + [] -> expr
parent[index] = self.Cast(lval, optype)
# node is SEF if lval is
parent[index].SEF = lval.SEF
return
if ltype == rtype == 'list':
if (rnt == 'LIST' and len(rval.ch) == 1
or rnt == 'CONST' and len(rval.value) == 1
or rnt == 'CAST'
):
# list + (list)element -> list + element
# list + [element] -> list + element
while rnt == 'CAST' and rval.t == 'list':
# Remove nested typecasts
# e.g. list + (list)((list)x) -> list + x
rval = parent[index].ch[1] = rval.ch[0]
rnt = rval.nt
if (rnt == 'LIST' and len(rval.ch) == 1
and rval.ch[0].t != 'list'):
# Finally, remove [] wrapper if it's not
# list within list
rval = child[1] = rval.ch[0]
rnt = rval.nt
if rnt == 'CONST' and len(rval.value) == 1:
# list + [constant] -> list + constant
rval.value = rval.value[0]
rtype = rval.t = lslcommon.PythonType2LSL[
type(rval.value)]
return
if (lnt == 'LIST' and len(lval.ch) == 1
or lnt == 'CONST' and len(lval.value) == 1
or lnt == 'CAST'
):
# (list)element + list -> element + list
# [element] + list -> element + list
# (list)[element] + list -> element + list
while lnt == 'CAST' and lval.t == 'list':
# Remove nested typecasts
# e.g. (list)((list)x) + list -> x + list
lval = parent[index].ch[0] = lval.ch[0]
lnt = lval.nt
if (lnt == 'LIST' and len(lval.ch) == 1
and lval.ch[0].t != 'list'):
# Finally, remove [] wrapper if it's not
# list within list
lval = child[0] = lval.ch[0]
lnt = lval.nt
if lnt == 'CONST' and len(lval.value) == 1:
# [constant] + list -> constant + list
lval.value = lval.value[0]
ltype = lval.t = lslcommon.PythonType2LSL[
type(lval.value)]
return
if optype == 'float' and rnt == 'CONST':
# Addition of floats is commutative.
# Put the constant first. May reduce stack.
lval, rval = child[0], child[1] = child[1], child[0]
lnt, rnt = rnt, lnt
ltype, rtype = rtype, ltype
if (self.addstrings and optype == 'string' and rnt == '+'
and rval.ch[0].nt == 'CONST' and lnt == 'CONST'
):
# We have CONST + (CONST + expr) of strings.
# Apply associativity to merge both constants.
# Add the constants
child[0].value = lslfuncs.add(child[0].value,
rval.ch[0].value)
# Prune the expr and graft it as RHS
child[1] = rval.ch[1]
# Re-optimize this node to apply it recursively
return self.FoldTree(parent, index)
# Nothing else to do with addition of float, string or list
return
# Must be two integers. This allows for a number of
# optimizations. First the most obvious ones.
assert optype == 'integer' # just to make sure
# Commutativity: place the constant first; may save stack and
# it helps simplifying
if rnt == 'CONST':
lval, rval = child[0], child[1] = child[1], child[0]
lnt, rnt = rnt, lnt
ltype, rtype = rtype, ltype
if lnt == 'CONST' and lval.value == 0:
# 0 + x = x
parent[index] = rval
return
if lnt == 'CONST' and rnt == '+' and rval.ch[0].nt == 'CONST':
# We have CONST + (CONST + expr)
# Apply associativity to merge both constants.
# Add the constants
lval.value = lslfuncs.add(lval.value, rval.ch[0].value)
# Prune the expr and graft it as RHS
child[1] = rval.ch[1]
# Re-optimize the result, to possibly apply -~ or ~- if
# appropriate.
return self.FoldTree(parent, index)
while lnt == 'CONST' and rnt == 'NEG' and rval.ch[0].nt == '~':
lval.value += 1
child[1] = rval.ch[0].ch[0]
# rtype doesn't change
assert child[1].t == 'integer'
self.FoldTree(parent, index)
node = parent[index]
nt, child = node.nt, node.ch
if nt != '+':
return
lval, rval = child[0], child[1]
lnt, rnt = lval.nt, rval.nt
ltype, rtype = lval.t, rval.t
while lnt == 'CONST' and rnt == '~' and rval.ch[0].nt == 'NEG':
lval.value -= 1
child[1] = rval.ch[0].ch[0]
# rtype doesn't change
assert child[1].t == 'integer'
self.FoldTree(parent, index)
node = parent[index]
nt, child = node.nt, node.ch
if nt != '+':
return
lval, rval = child[0], child[1]
lnt, rnt = lval.nt, rval.nt
ltype, rtype = lval.t, rval.t
if lnt != 'CONST':
# Neither is const.
# The case expr - expr -> 0 has been handled earlier
# because it's more general and applies to floats as well.
# -expr + -expr -> -(expr + expr) (saves 1 byte)
if lnt == rnt == 'NEG':
node = nr(nt='+', t=optype, ch=[lval.ch[0], rval.ch[0]],
SEF=lval.ch[0].SEF and rval.ch[0].SEF)
node = nr(nt='NEG', t=optype, ch=[node], SEF=node.SEF)
parent[index] = node
return
return
RSEF = rval.SEF
if lval.value == -1 or lval.value == -2:
if rnt == 'NEG': # Cancel the NEG
node = nr(nt='~', t=optype, ch=rval.ch, SEF=RSEF)
else: # Add the NEG
node = nr(nt='NEG', t=optype, ch=[rval], SEF=RSEF)
node = nr(nt='~', t=optype, ch=[node], SEF=RSEF)
if lval.value == -2:
node = nr(nt='NEG', t=optype, ch=[node], SEF=RSEF)
node = nr(nt='~', t=optype, ch=[node], SEF=RSEF)
parent[index] = node
return
if lval.value == 1 or lval.value == 2:
if rnt == '~': # Cancel the ~
node = nr(nt='NEG', t=optype, ch=rval.ch, SEF=RSEF)
else:
node = nr(nt='~', t=optype, ch=[rval], SEF=RSEF)
node = nr(nt='NEG', t=optype, ch=[node], SEF=RSEF)
if lval.value == 2:
node = nr(nt='~', t=optype, ch=[node], SEF=RSEF)
node = nr(nt='NEG', t=optype, ch=[node], SEF=RSEF)
parent[index] = node
return
# More than 2 becomes counter-productive.
return
if nt == '<<' and child[1].nt == 'CONST':
# Transforming << into multiply saves some bytes.
if child[1].value & 31:
# x << 3 --> x * 8
# we have {<<, something, {CONST n}}
# we transform it into {*, something, {CONST n}}
nt = node.nt = '*'
child[1].value = lslfuncs.S32(1 << (child[1].value & 31))
# Fall through to optimize product
else: # x << 0 --> x
parent[index] = child[0]
return
if (nt == '%' and child[1].nt == 'CONST'
and child[1].t == 'integer'
and abs(child[1].value) == 1):
# a%1 -> a&0
# a%-1 -> a&0
# (SEF analysis performed below)
nt = node.nt = '&'
child[1].value = 0
self.FoldTree(parent, index)
return
if nt in ('*', '/'):
# Extract signs outside
if child[0].nt == 'NEG' or child[1].nt == 'NEG':
a, b = 0, 1
if child[b].nt == 'NEG':
a, b = 1, 0
child[a] = child[a].ch[0]
parent[index] = node = nr(nt='NEG', t=node.t, ch=[node],
SEF = node.SEF)
# Fold the new expression
self.FoldTree(parent, index)
return
# Deal with operands in any order
a, b = 0, 1
if child[a].nt == 'CONST' and child[a].t in ('float', 'integer'):
a, b = 1, 0
if child[b].nt == 'CONST':
val = child[b].value
# Optimize out signs if possible.
# Note that (-intvar)*floatconst needs cornermath because
# -intvar could equal intvar if intvar = -2147483648,
# so the sign is a no-op and pushing it to floatconst would
# make the result be different.
if (child[a].nt == 'NEG'
and (self.cornermath
or child[a].t != 'integer'
or child[b].t != 'float')
):
# Expression is of the form (-float)*const or (-float)/const or const/(-float)
if val != int(-2147483648) or child[a].t == 'integer': # can't be optimized otherwise
child[a] = child[a].ch[0] # remove NEG
child[b].value = val = -val
# Five optimizations corresponding to -2, -1, 0, 1, 2
# for product, and two for division:
# expr * 1 -> expr
# expr * 0 -> 0 if side-effect free
# expr * -1 -> -expr
# ident * 2 -> ident + ident (only if ident is local)
# ident * -2 -> -(ident + ident) (only if ident is local)
# expr/1 -> expr
# expr/-1 -> -expr
if (nt == '*' and child[b].t in ('float', 'integer')
and val in (-2, -1, 0, 1, 2)
or nt == '/'
and b == 1 and val in (-1, 1)
):
if val == 1:
parent[index] = child[a]
return
if val == 0:
if child[a].SEF:
parent[index] = child[b]
return
if val == -1:
# Note 0.0*-1 equals -0.0 in LSL, so this is safe
node = parent[index] = nr(nt='NEG', t=node.t,
ch=[child[a]], SEF=child[a].SEF)
return
# only -2, 2 remain
if child[a].nt == 'IDENT' and self.isLocalVar(child[a]):
child[b] = child[a].copy()
node.nt = '+'
if val == -2:
parent[index] = nr(nt='NEG', t=node.t,
ch=[node], SEF=node.SEF)
return
return
if nt == '==':
if child[0].t == child[1].t == 'integer':
# Deal with operands in any order
a, b = 0, 1
if child[b].nt != 'CONST':
a, b = 1, 0
# a == -1 (in any order) -> !~a,
# a == 0 -> !a
# a == 1 -> !~-a
if child[b].nt == 'CONST':
if child[b].value in (-1, 0, 1):
node = child[a]
if child[b].value == -1:
node = nr(nt='~', t='integer', ch=[node],
SEF=node.SEF)
elif child[b].value == 1:
node = nr(nt='NEG', t='integer', ch=[node],
SEF=node.SEF)
node = nr(nt='~', t='integer', ch=[node],
SEF=node.SEF)
node = parent[index] = nr(nt='!', t='integer',
ch=[node], SEF=node.SEF)
# Can't delete
# See https://docs.python.org/2/reference/simple_stmts.html#del
child = None
self.FoldTree(parent, index)
return
# -a == -b -> a == b with const variations.
# Note this changes the sign of two CONSTs but that case
# should not reach here, as those are resolved earlier.
if ((child[0].nt == 'NEG' or child[0].nt == 'CONST')
and
(child[1].nt == 'NEG' or child[1].nt == 'CONST')
):
for a in (0, 1):
if child[a].nt == 'NEG':
child[a] = child[a].ch[0] # remove sign
else:
child[a].value = lslfuncs.neg(
child[a].value)
if self.CompareTrees(child[0], child[1]):
# expr == expr -> 1
parent[index] = nr(nt='CONST', t='integer', value=1,
SEF=True)
return
return
if nt in ('<=', '>=') or nt == '!=' and child[0].t != 'list':
# Except for list != list, all these comparisons are compiled
# as !(a>b) etc. so we transform them here in order to reduce
# the number of cases to check.
# a<=b --> !(a>b); a>=b --> !(a<b); a!=b --> !(a==b)
node.nt = {'<=':'>', '>=':'<', '!=':'=='}[nt]
parent[index] = nr(nt='!', t=node.t, ch=[node])
self.FoldTree(parent, index)
return
if nt == '>' and (child[0].SEF and child[1].SEF
or child[0].nt == 'CONST'
or child[1].nt == 'CONST'
):
# Invert the inequalities to avoid doubling the cases to check.
# a>b -> b<a
nt = node.nt = '<'
child[1], child[0] = child[0], child[1]
# fall through to check for '<'
if nt == '<':
# expr < expr -> 0
if self.CompareTrees(child[0], child[1]):
parent[index] = nr(nt='CONST', t='integer', value=0,
SEF=True)
return
if child[0].t == child[1].t in ('integer', 'float'):
if (child[0].nt == 'CONST'
and child[1].nt == 'FNCALL'
and self.FnSEF(child[1])
):
# CONST < FNCALL aka FNCALL > CONST
# when FNCALL.max <= CONST: always false
# when CONST < FNCALL.min: always true
if ('max' in self.symtab[0][child[1].name]
and not lslfuncs.less(child[0].value,
self.symtab[0][child[1].name]['max'])
):
parent[index] = nr(nt='CONST', t='integer',
value=0, SEF=True)
return
if ('min' in self.symtab[0][child[1].name]
and lslfuncs.less(child[0].value,
self.symtab[0][child[1].name]['min'])
):
parent[index] = nr(nt='CONST', t='integer',
value=1, SEF=True)
return
if (child[1].nt == 'CONST'
and child[0].nt == 'FNCALL'
and self.FnSEF(child[0])
):
# FNCALL < CONST
# when CONST > FNCALL.max: always true
# when CONST <= FNCALL.min: always false
if ('max' in self.symtab[0][child[0].name]
and lslfuncs.less(
self.symtab[0][child[0].name]['max']
, child[1].value)
):
parent[index] = nr(nt='CONST', t='integer',
value=1, SEF=True)
return
if ('min' in self.symtab[0][child[0].name]
and not lslfuncs.less(
self.symtab[0][child[0].name]['min'],
child[1].value)
):
parent[index] = nr(nt='CONST', t='integer',
value=0, SEF=True)
return
# Convert 2147483647<i and i<-2147483648 to i&0
if (child[0].t == child[1].t == 'integer'
and (child[0].nt == 'CONST'
and child[0].value == 2147483647
or child[1].nt == 'CONST'
and child[1].value == int(-2147483648))
):
a, b = 0, 1
# Put the constant in child[b]
if child[a].nt == 'CONST':
a, b = b, a
nt = node.nt = '&'
child[b].value = 0
# fall through to check for '&'
else:
return
if nt in ('&', '|'):
# expr & expr -> expr
# expr | expr -> expr
if self.CompareTrees(child[0], child[1]):
parent[index] = child[0]
return
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b]
if child[b].nt != 'CONST':
a, b = 1, 0
if child[b].nt == 'CONST':
val = child[b].value
if (nt == '|' and val == 0
or nt == '&'
and (val == -1
or val == 1 and self.IsBool(child[a]))
):
# a|0 -> a
# a&-1 -> a
# a&1 -> a if a is boolean
parent[index] = child[a]
return
if (nt == '|'
and (val == -1
or (val & 1) == 1 and self.IsBool(child[a]))
or nt == '&' and val == 0
):
# a|-1 -> -1 if a is SEF
# a|C -> C if bit 0 of C is 1 and a is bool and SEF
# a&0 -> 0 if a is SEF
if child[a].SEF:
parent[index] = child[b]
# Apply boolean distributivity
applied = False
opposite = '&' if nt == '|' else '|'
if child[0].nt == child[1].nt == opposite:
left = child[0].ch
right = child[1].ch
# Can't loop individually because we must break out of both
for c, d in ((0, 0), (0, 1), (1, 0), (1, 1)):
if self.CompareTrees(left[c], right[d]):
child[1].nt = nt
nt = node.nt = opposite
opposite = child[1].nt
right[d] = left[1 - c]
child[0] = left[c]
applied = True
break
# Apply absorption, possibly after distributivity
if child[0].nt == opposite or child[1].nt == opposite:
c = 0 if child[1].nt == opposite else 1
for d in (0, 1):
if (self.CompareTrees(child[c], child[1 - c].ch[d])
and child[1 - c].ch[1 - d].SEF
):
node = parent[index] = child[c]
nt = node.nt
child = node.ch
applied = True
break
if applied:
# Re-fold
self.FoldTree(parent, index)
return
if nt == '^':
# expr ^ expr -> 0
if self.CompareTrees(child[0], child[1]):
parent[index] = nr(nt='CONST', t='integer', value=0,
SEF=True)
return
a, b = 0, 1
if child[a].nt == 'CONST':
a, b = 1, 0
if child[b].nt == 'CONST' and child[b].value in (0, -1):
if child[b].value == 0:
parent[index] = child[a]
else:
node.nt = '~'
node.ch = [child[a]]
return
if nt == '||':
# Expand to its equivalent a || b -> !!(a | b)
node = nr(nt='|', t='integer', ch=[child[0], child[1]],
SEF=child[0].SEF and child[1].SEF)
node = nr(nt='!', t='integer', ch=[node], SEF=node.SEF)
node = nr(nt='!', t='integer', ch=[node], SEF=node.SEF)
parent[index] = node
# Make another pass with the substitution
self.FoldTree(parent, index)
elif nt == '&&':
# Expand to its equivalent a && b -> !(!a | !b)
orchildren = [
nr(nt='!', t='integer', ch=[child[0]], SEF=child[0].SEF),
nr(nt='!', t='integer', ch=[child[1]], SEF=child[1].SEF)
]
node = nr(nt='|', t='integer', ch=orchildren,
SEF=child[0].SEF and child[1].SEF)
node = nr(nt='!', t='integer', ch=[node], SEF=node.SEF)
parent[index] = node
# Make another pass with the substitution
self.FoldTree(parent, index)
return
if nt in self.assign_ops:
# Transform the whole thing into a regular assignment, as there are
# no gains and it simplifies the optimization.
# An assignment has no side effects only if it's of the form x = x.
if nt != '=':
# Replace the node with the expression alone...
# e.g. a += b -> a + b
node.nt = nt[:-1]
# Linden Craziness: int *= float; is valid (but no other
# int op= float is). It's actually performed as
# i = (integer)(i + (f));
# This breaks equivalence of x op= y as x = x op (y) so we add
# the explicit type cast here.
if (nt == '*=' and child[0].t == 'integer'
and child[1].t == 'float'):
node.t = 'float' # Addition shall return float.
node = self.Cast(node, 'integer')
# ... and wrap it in an assignment.
child = [child[0].copy(), node]
node = parent[index] = nr(nt='=', t=child[0].t, ch=child)
# We have a regular assignment either way now. Simplify the RHS.
self.FoldTree(node.ch, 1)
chkequal = child[1].ch[0] if child[1].nt == '=' else child[1]
if (child[0].nt == chkequal.nt == 'IDENT'
and chkequal.name == child[0].name
and chkequal.scope == child[0].scope
or child[0].nt == chkequal.nt == 'FLD'
and chkequal.ch[0].name == child[0].ch[0].name
and chkequal.ch[0].scope == child[0].ch[0].scope
and chkequal.fld == child[0].fld
):
parent[index] = child[1]
return
if nt == 'IDENT' or nt == 'FLD':
node.SEF = True
if self.globalmode:
ident = child[0] if nt == 'FLD' else node
# Resolve constant values so they can be optimized
sym = self.symtab[ident.scope][ident.name]
defn = self.tree[sym['Loc']]
assert defn.name == ident.name
# Assume we already were there
if defn.ch:
val = defn.ch[0]
if val.nt != 'CONST' or ident.t == 'key':
return
val = val.copy()
else:
val = nr(nt='CONST', t=defn.t,
value=self.DefaultValues[defn.t], SEF=True)
if nt == 'FLD':
val = nr(nt='CONST', t='float',
value=val.value['xyzs'.index(node.fld)], SEF=True)
parent[index] = val
return
if nt == 'FNCALL':
name = node.name
SEFargs = True
CONSTargs = True
for idx in xrange(len(child)-1, -1, -1):
self.FoldTree(child, idx)
# Function is not SEF if any argument is not SEF
SEFargs = SEFargs and child[idx].SEF
# Function is not a constant if any argument is not a constant
CONSTargs = CONSTargs and child[idx].nt == 'CONST'
sym = self.symtab[0][name]
OptimizeArgs(node, sym)
try:
if 'Fn' in sym and (self.FnSEF(node) or lslcommon.IsCalc):
# It's side-effect free if the children are and the function
# is marked as SEF.
if SEFargs:
node.SEF = True
if CONSTargs:
# Call it
fn = sym['Fn']
args = [arg.value for arg in child]
assert len(args) == len(sym['ParamTypes'])
try:
# May raise ELSLCantCompute
if 'detect' in self.symtab[0][name]:
value = fn(*args,
evsym=None if self.CurEvent is None
else self.events[self.CurEvent])
else:
value = fn(*args)
finally:
del args
if not self.foldtabs:
generatesTabs = (
isinstance(value, unicode) and u'\t' in value
or type(value) == list
and any(isinstance(x, unicode)
and u'\t' in x for x in value)
)
if generatesTabs:
if self.warntabs:
warning(u"Can't optimize call to %s"
u" because it would generate a tab"
u" character (you can force the "
u" optimization with the 'foldtabs'"
u" option, or disable this warning by"
u" disabling the 'warntabs' option)."
% name.decode('utf8'))
raise lslfuncs.ELSLCantCompute()
# Replace with a constant
parent[index] = nr(nt='CONST', t=node.t, value=value,
SEF=True)
return
elif SEFargs and 'SEF' in self.symtab[0][name]:
# The function is marked as SEF in the symbol table, and the
# arguments are all side-effect-free. The result is SEF.
node.SEF = True
except lslfuncs.ELSLCantCompute:
# Don't transform the tree if function is not computable
pass
# At this point, we have resolved whether the function is SEF,
# or whether the function resolves to a constant.
OptimizeFunc(self, parent, index)
return
if nt == 'PRINT':
self.FoldTree(child, 0)
# PRINT is considered to have side effects. If it's there, assume
# there's a reason.
return
if nt == 'EXPR':
self.FoldTree(child, 0)
node.SEF = child[0].SEF
return
if nt == 'FNDEF':
# FIXME: Fix SEFness of UDFs
# A return statement does have side effects for the current
# function, as removing it would change its behaviour drastically.
# However, when seen from the outside, that does not make the
# function as a whole have side effects: if all nodes except
# return statements are SEF, the function is SEF.
# CurEvent is needed when folding llDetected* function calls
if hasattr(node, 'scope'):
# function definition
self.CurEvent = None
else:
# event definition
self.CurEvent = node.name
self.FoldTree(child, 0)
# Test if the event is SEF and does nothing, and remove it if so.
if (not hasattr(node, 'scope') and child[0].SEF
and 'SEF' in self.events[node.name]
):
# Delete ourselves.
del parent[index]
return
# Delete trailing bare RETURNs.
# TODO: This works, but analysis of code paths is DCR's thing
# and this is incomplete, e.g. x(){{return;}} is not detected.
while child[0].ch:
last = child[0].ch[-1]
if last.nt != 'RETURN' or last.ch:
break
del child[0].ch[-1]
if child[0].SEF:
node.SEF = True
if node.name in self.symtab[0]:
# Mark the symbol table entry if it's not an event.
self.symtab[0][node.name]['SEF'] = True
return
if nt in ('VECTOR', 'ROTATION', 'LIST'):
isconst = True
issef = True
for idx in xrange(len(child)):
self.FoldTree(child, idx)
isconst = isconst and child[idx].nt == 'CONST'
issef = issef and child[idx].SEF
if isconst:
value = [x.value for x in child]
if nt == 'VECTOR':
value = Vector([lslfuncs.ff(x) for x in value])
elif nt == 'ROTATION':
value = Quaternion([lslfuncs.ff(x) for x in value])
parent[index] = nr(nt='CONST', t=node.t, value=value, SEF=True)
return
node.SEF = issef
return
if nt == 'STDEF':
for idx in xrange(len(child) - 1, -1, -1):
self.FoldTree(child, idx)
if not child:
# All events removed - add a dummy timer()
child.append(nr(nt='FNDEF', t=None, name='timer',
pscope=0, ptypes=[], pnames=[],
ch=[nr(nt='{}', t=None, ch=[])]
))
return
if nt == '{}':
# Remove SEF statements, and mark as SEF if it ends up empty
idx = 0
nchild = len(child)
while idx < nchild:
self.FoldTree(child, idx)
self.FoldStmt(child, idx)
if child[idx].SEF:
# SEF statements can be removed
del child[idx]
nchild -= 1
else:
idx += 1
# Make another pass to remove JUMPs to the next statement
changed = True # Allow entering the loop
while changed:
changed = False
idx = 0
while idx < nchild:
advance = 1
if child[idx].nt == 'JUMP':
idx2 = idx + 1
while idx2 < nchild:
# Search for a label that is the destination of
# this JUMP, skipping other labels
if child[idx2].nt != '@':
break
if (child[idx].scope == child[idx2].scope
and child[idx].name == child[idx2].name
):
sym = self.symtab[child[idx].scope]
sym = sym[child[idx].name]
# remove the JUMP
del child[idx]
advance = 0
changed = True
idx2 -= 1 # it has scrolled
nchild -= 1
# remove reference to label
assert(sym['ref'])
sym['ref'] -= 1
if sym['ref'] == 0:
# No longer referenced - delete label too
del child[idx2]
nchild -= 1
break
idx2 += 1
del idx2
idx += advance
# We're SEF if we're empty, as we've removed all SEF statements
node.SEF = nchild == 0
return
if nt == 'IF':
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if child[0].nt == 'CONST':
# We might be able to remove one of the branches.
if lslfuncs.cond(child[0].value):
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
parent[index] = child[1]
return
elif len(child) == 3:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
parent[index] = child[2]
return
else:
# No ELSE branch, replace the statement with an empty one.
parent[index] = nr(nt=';', t=None, SEF=True)
return
else:
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
if len(child) > 2:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
# Check if it makes sense to swap if and else branches
if not child[2].SEF:
# Check if we can gain something by negating the
# expression.
# Swap 'if' and 'else' branch when the condition has
# a '!' prefix
if child[0].nt == '!':
child[0] = child[0].ch[0]
child[1], child[2] = child[2], child[1]
# Swap them if condition is '==' with integer operands
if (child[0].nt == '=='
and child[0].ch[0].t
== child[0].ch[1].t == 'integer'
):
child[0].nt = '^'
child[1], child[2] = child[2], child[1]
# Re-test just in case we swapped in the previous check.
if child[2].SEF:
# no point in "... else ;" - remove else branch
del child[2]
if child[1].SEF:
# if (X) ; -> X;
if len(child) == 2:
parent[index] = nr(nt='EXPR', t=child[0].t,
ch=[child[0]])
# It has been promoted to statement. Fold it as such.
# (Will remove it if SEF)
self.FoldStmt(parent, index)
return
# If type(X) != Key, then:
# if (X) ; else {stuff} -> if (!X) {stuff}
# (being careful with labels again)
if child[0].t != 'key':
# We've already converted all other types to equivalent
# comparisons
assert child[0].t == 'integer'
child[0] = nr(nt='!', t='integer', ch=[child[0]])
del child[1]
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if all(subnode.SEF for subnode in child):
node.SEF = True
return
if nt == 'WHILE':
# Loops are not considered side-effect free. If the expression is
# TRUE, it's definitely not SEF. If it's FALSE, it will be optimized
# out anyway. Otherwise we just don't know if it may be infinite,
# even if every component is SEF.
if not child[1].SEF:
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if child[0].nt == 'CONST':
# See if the whole WHILE can be eliminated.
if not lslfuncs.cond(child[0].value):
# Whole statement can be removed.
parent[index] = nr(nt=';', t=None, SEF=True)
return
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
return
# It does nothing - Turn it into a do..while
nt = node.nt = 'DO'
child[0], child[1] = child[1], child[0]
# Fall through to optimize as DO..WHILE
if nt == 'DO':
self.FoldTree(child, 0) # This one is always executed.
self.FoldStmt(child, 0)
self.ExpandCondition(child, 1)
self.FoldTree(child, 1)
self.FoldCond(child, 1)
# See if the latest part is a constant.
if child[1].nt == 'CONST':
if not lslfuncs.cond(child[1].value):
# Only one go. Replace with the statement(s).
parent[index] = child[0]
return
if nt == 'FOR':
assert child[0].nt == 'EXPRLIST'
assert child[2].nt == 'EXPRLIST'
self.FoldAndRemoveEmptyStmts(child[0].ch)
self.ExpandCondition(child, 1) # Condition.
self.FoldTree(child, 1)
self.FoldCond(child, 1)
if child[1].nt == 'CONST':
# FOR is delicate. It can have multiple expressions at start.
# And if there is more than one, these expressions will need a
# new block, which means new scope, which is dangerous.
# They are expressions, no declarations or labels allowed, thus
# no new identifiers may be created in the new scope, but it
# still feels dodgy.
if lslfuncs.cond(child[1].value):
# Endless loop. Traverse the loop and the iterator.
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2].ch)
else:
# Loop never executes.
# Convert expression list to code block.
exprlist = []
for expr in child[0].ch:
# Fold into expression statements.
exprlist.append(nr(nt='EXPR', t=expr.t, ch=[expr]))
# returns type None, as FOR does
if exprlist:
# We're in the case where there are expressions. If any
# remain, they are not SEF (or they would have been
# removed earlier) so don't mark this node as SEF.
parent[index] = nr(nt='{}', t=None, ch=exprlist)
else:
parent[index] = nr(nt=';', t=None, SEF=True)
return
else:
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2].ch)
return
if nt == 'RETURN':
if child:
self.FoldTree(child, 0)
return
if nt == 'DECL':
if child:
# Check if child is a simple_expr. If it is, then we keep the
# original attached to the folded node to use it in the output.
if getattr(child[0], 'Simple', False):
orig = self.CopyNode(child[0])
del orig.Simple # presence of orig in child will be enough
self.FoldTree(child, 0)
child[0].orig = orig
else:
self.FoldTree(child, 0)
# Remove assignment if integer zero.
if (node.t == 'integer' and child[0].nt == 'CONST'
and not child[0].value
):
node.ch = None
return
else:
# Add assignment if vector, rotation or float.
if node.t in ('float', 'vector', 'rotation'):
typ = node.t
node.ch = [nr(nt='CONST', t=typ, SEF=True,
value=0.0 if typ == 'float'
else ZERO_VECTOR if typ == 'vector'
else ZERO_ROTATION)]
# Declarations always have side effects.
return
if nt == 'STSW':
# State switch always has side effects.
return
if nt == 'SUBIDX':
# Recurse to every child. It's SEF if all children are.
idx = 0
issef = True
while idx < len(child):
self.FoldTree(child, idx)
issef = issef and child[idx].SEF
idx += 1
node.SEF = issef
return
if nt == ';':
node.SEF = True
return
if nt == '@':
# SEF if there are no JUMPs jumping to it
node.SEF = not self.symtab[node.scope][node.name]['ref']
return
if nt in ('JUMP', 'V++', 'V--', '--V', '++V', 'LAMBDA'):
# Except LAMBDA, these all have side effects, as in, can't be
# eliminated as statements.
# LAMBDA can't be eliminated without scrolling Loc's.
return
assert False, 'Internal error: This should not happen, node type = ' \
+ nt # pragma: no cover
def IsValidGlobalIdOrConst(self, node):
# nan can't be represented as a simple constant; all others are valid
return not (node.nt == 'CONST' and node.t == 'float'
and math.isnan(node.value))
def IsValidGlobalConstant(self, decl):
if decl.ch is None:
return True
expr = decl.ch[0]
if expr.nt in ('CONST', 'IDENT'):
return self.IsValidGlobalIdOrConst(expr)
if expr.nt not in ('VECTOR', 'ROTATION', 'LIST'):
return False
return all(elem.nt in ('CONST', 'IDENT')
and self.IsValidGlobalIdOrConst(elem)
for elem in expr.ch)
def FoldScript(self, warningpass = True):
"""Optimize the symbolic table symtab in place. Requires a table of
predefined functions for folding constants.
"""
self.globalmode = False
tree = self.tree
self.CurEvent = None
FuncOptSetup()
# Constant folding pass. It does some other optimizations along the way.
for idx in xrange(len(tree)):
if tree[idx].nt == 'DECL':
self.globalmode = True
self.FoldTree(tree, idx)
self.globalmode = False
if warningpass and not self.IsValidGlobalConstant(tree[idx]):
warning(u"Expression in globals doesn't resolve to a simple constant.")
else:
self.FoldTree(tree, idx)