LSL-PyOptimizer/lslopt/lsloutput.py
Sei Lisa 397dc896fb Fix --optimizer-options=-optimize still applying some optimizations.
This option normally takes effect through the base class in lsloptimize.py, which doesn't call the optimization techniques if deactivated. However, lsloutput.py is not called by it, and it applied some optimizations on its own.

Fixed on the reading of the optimization options, by filtering them by whether the optimize option is active.
2016-11-29 23:03:14 +01:00

458 lines
18 KiB
Python

# (C) Copyright 2015-2016 Sei Lisa. All rights reserved.
#
# This file is part of LSL PyOptimizer.
#
# LSL PyOptimizer is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# LSL PyOptimizer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with LSL PyOptimizer. If not, see <http://www.gnu.org/licenses/>.
# Convert an abstract syntax tree + symbol table back to a script as text.
import lslfuncs
from lslcommon import Key, Vector, Quaternion
from lslparse import warning
import math
class outscript(object):
binary_operands = frozenset(('||','&&','^','|','&','==','!=','<','<=','>',
'>=','<<','>>','+','-','*','/','%', '=', '+=', '-=', '*=', '/=','%=',
))
extended_assignments = frozenset(('&=', '|=', '^=', '<<=', '>>='))
unary_operands = frozenset(('NEG', '!', '~'))
op_priority = {'=':0, '+=':0, '-=':0, '*=':0, '/=':0, '%=':0, '&=':0,
'|=':0, '^=':0, '<<=':0, '>>=':0,
'||':1, '&&':1, '|':2, '^':3, '&':4, '==':5, '!=':5,
'<':6, '<=':6, '>':6, '>=':6, '<<':7, '>>':7, '+':8, '-':8,# 'NEG':8,
'*':9, '/':9, '%':9}#, '!':10, '~':10, '++':10, '--':10, }
def Value2LSL(self, value):
tvalue = type(value)
if tvalue in (Key, unicode):
pfx = sfx = ''
if type(value) == Key:
# Constants of type key can not be represented
#raise lslfuncs.ELSLTypeMismatch
# Actually they can be the result of folding.
# On second thought, if we report the error, the location info
# is lost. So we emit a warning instead, letting the compiler
# report the error in the generated source.
if self.globalmode and self.listmode:
warning('Illegal combo: Key type inside a global list')
if self.listmode or not self.globalmode:
if self.globalmode:
pfx = '(key)'
else:
pfx = '((key)'
sfx = ')'
if '\t' in value and self.warntabs:
warning("A string contains a tab. Tabs are expanded to four"
" spaces by the viewer when copy-pasting the code"
" (disable this warning by disabling the 'warntabs'"
" option).")
return pfx + '"' + value.encode('utf8').replace('\\','\\\\') \
.replace('"','\\"').replace('\n','\\n') + '"' + sfx
if tvalue == int:
if value < 0 and not self.globalmode and self.optsigns:
#return '0x%X' % (value + 4294967296)
return '((integer)' + str(value) + ')'
return str(value)
if tvalue == float:
if self.optfloats and value.is_integer() and -2147483648.0 <= value < 2147483648.0:
if self.globalmode and not self.listmode:
return str(int(value))
elif not self.globalmode:
# Important inside lists!!
return '((float)' + str(int(value)) + ')'
s = repr(value)
if s == 'nan':
if math.copysign(1, value) < 0: # Indeterminate
return '(1e40*0)'
return '((float)"NaN")' # this shouldn't appear in globals
if s == 'inf':
return '1e40'
if s == '-inf':
return '-1e40' if self.globalmode else '((float)-1e40)'
# Try to remove as many decimals as possible but keeping the F32 value intact
exp = s.find('e')
if ~exp:
s, exp = s[:exp], s[exp:]
if exp[1] == '+':
exp = exp[:1] + exp[2:]
if '.' not in s:
# I couldn't produce one but it's assumed that if it happens,
# this code deals with it correctly
s += '.' # pragma: no cover
else:
if '.' not in s:
# This should never happen (Python should always return a point or exponent)
return s + '.' # pragma: no cover
exp = ''
# Shorten the float as much as possible.
while s[-1] != '.' and lslfuncs.F32(float(s[:-1]+exp)) == value:
s = s[:-1]
if s[-1] != '.':
news = s[:-1]
neg = ''
if s[0] == '-':
news = news[1:]
neg = '-'
# Try harder
point = news.index('.') + 1 - len(news)
if point:
news = str(int(news[:point-1] + news[point:]) + 1).zfill(len(news)-1) # Increment
else:
news = str(int(news[:-1])+1).zfill(len(news)-1)
news = news[:point + len(news)] + '.' + news[point + len(news):] # Reinsert point
# Repeat the operation with the incremented number
while news[-1] != '.' and lslfuncs.F32(float(neg+news[:-1]+exp)) == value:
news = news[:-1]
if len(neg+news) < len(s) and lslfuncs.F32(float(neg+news+exp)) == value:
# Success! But we try even harder. We may have converted
# 9.9999e3 into 10.e3; that needs to be turned into 1.e4.
if exp != '':
if news[2:3] == '.': # we converted 9.9... into 10.
newexp = 'e' + str(int(exp[1:])+1) # increase exponent
news2 = news[0] + '.' + news[1] + news[3:] # move dot to the left
while news2[-1] == '0': # remove trailing zeros
news2 = news2[:-1]
if len(neg+news2) < len(s) and lslfuncs.F32(float(neg+news2+newexp)) == value:
news = news2
exp = newexp
s = neg+news
if value >= 0 or self.globalmode or not self.optsigns:
return s + exp
return '((float)' + s + exp + ')'
if tvalue == Vector:
return '<' + self.Value2LSL(value[0]) + ', ' + self.Value2LSL(value[1]) \
+ ', ' + self.Value2LSL(value[2]) + '>'
if tvalue == Quaternion:
return '<' + self.Value2LSL(value[0]) + ', ' + self.Value2LSL(value[1]) \
+ ', ' + self.Value2LSL(value[2]) + ', ' + self.Value2LSL(value[3]) + '>'
if tvalue == list:
if value == []:
return '[]'
if len(value) < 5:
self.listmode = True
ret = '[' + self.Value2LSL(value[0])
for elem in value[1:]:
ret += ', ' + self.Value2LSL(elem)
ret += ']'
self.listmode = False
return ret
ret = '\n'
first = True
self.indentlevel += 1
for entry in value:
if not first:
ret += self.dent() + ', '
else:
ret += self.dent() + '[ '
self.listmode = True
ret += self.Value2LSL(entry) + '\n'
self.listmode = False
first = False
self.indentlevel -= 1
return ret + self.dent() + self.indent + ']'
assert False, u'Value of unknown type in Value2LSL: ' + repr(value)
def dent(self):
return self.indent * self.indentlevel
def FindName(self, node, scope = None):
if scope is None:
# node is a node
if 'scope' in node and 'NewName' in self.symtab[node['scope']][node['name']]:
return self.symtab[node['scope']][node['name']]['NewName']
if node['nt'] == 'FNCALL' and 'NewName' in self.symtab[0][node['name']]:
return self.symtab[0][node['name']]['NewName']
return node['name']
# node is a name
if 'NewName' in self.symtab[scope][node]:
return self.symtab[scope][node]['NewName']
return node
def OutIndented(self, node):
if node['nt'] != '{}':
self.indentlevel += 1
ret = self.OutCode(node)
if node['nt'] != '{}':
self.indentlevel -= 1
return ret
def OutExprList(self, L):
ret = ''
if L:
First = True
for item in L:
if not First:
ret += ', '
ret += self.OutExpr(item)
First = False
return ret
def OutExpr(self, expr):
# Handles expression nodes (as opposed to statement nodes)
nt = expr['nt']
if 'ch' in expr:
child = expr['ch']
if nt in self.binary_operands:
lnt = child[0]['nt']
lparen = False
rnt = child[1]['nt']
rparen = False
if nt in self.op_priority:
base_pri = self.op_priority[nt]
if lnt in self.op_priority:
if self.op_priority[lnt] < base_pri:
lparen = True
elif lnt == 'NEG' and base_pri > self.op_priority['-']:
lparen = True
# This situation has ugly cases due to the strange priority of
# unary minus. Consider the following two statements:
# (~-a) * a
# a * (~-a) * a
# In one case, the (~-a) is a left child; in the other, it's
# part of a right child. In both, cases, the parentheses are
# mandatory, or they would be interpreted respectively as:
# ~-(a * a)
# a * ~-(a * a)
# Yet the tree structure makes it quite hard to detect these.
# So as a safeguard, for now we parenthesize all ~ and ! within
# binary operands, as they have a deceitful binding power when
# there's a unary minus downstream.
#
# FIXME: See if the parenthesizing of ~ and ! can be improved.
elif lnt in ('~', '!'):
lparen = True
if rnt in self.op_priority:
if self.op_priority[rnt] <= base_pri:
rparen = True
# see above
elif rnt in ('~', '!'):
rparen = True
if lparen:
ret = '(' + self.OutExpr(child[0]) + ')'
else:
ret = self.OutExpr(child[0])
ret += ' ' + nt + ' '
if rparen:
ret += '(' + self.OutExpr(child[1]) + ')'
else:
ret += self.OutExpr(child[1])
return ret
if nt == 'IDENT':
return self.FindName(expr)
if nt == 'CONST':
if self.foldconst and expr['t'] == 'list' and len(expr['value'])==1 and not self.globalmode:
return '(list)' + self.Value2LSL(expr['value'][0])
return self.Value2LSL(expr['value'])
if nt == 'CAST' or self.foldconst and nt in ('LIST', 'CONST') and len(child)==1 and not self.globalmode:
ret = '(' + expr['t'] + ')'
expr = child[0]
if expr['nt'] in ('CONST', 'IDENT', 'V++', 'V--', 'VECTOR',
'ROTATION', 'LIST', 'FIELD', 'PRINT', 'FNCALL'):
if expr['nt'] != 'LIST' or len(expr['ch']) != 1:
return ret + self.OutExpr(expr)
return ret + '(' + self.OutExpr(expr) + ')'
if nt == 'LIST':
self.listmode = True
ret = '[' + self.OutExprList(child) + ']'
self.listmode = False
return ret
if nt in ('VECTOR', 'ROTATION'):
ret = ('<' + self.OutExpr(child[0]) + ','
+ self.OutExpr(child[1]) + ',')
if nt == 'ROTATION':
ret += self.OutExpr(child[2]) + ','
lnt = child[-1]['nt']
if lnt in self.op_priority \
and self.op_priority[lnt] <= self.op_priority['>']:
ret += '(' + self.OutExpr(child[-1]) + ')'
else:
ret += self.OutExpr(child[-1])
return ret + '>'
if nt == 'FNCALL':
return self.FindName(expr) + '(' + self.OutExprList(child) + ')'
if nt == 'PRINT':
return 'print(' + self.OutExpr(child[0]) + ')'
if nt in self.unary_operands:
ret = nt
lnt = child[0]['nt']
paren = False
if nt == 'NEG':
ret = '-'
if lnt in self.op_priority:
paren = self.op_priority[lnt] <= self.op_priority['-']
elif lnt == 'NEG' or lnt == '--V':
ret += ' ' # don't output -- as that's a different token
else:
if lnt in self.op_priority:
paren = True
if paren:
ret += '(' + self.OutExpr(child[0]) + ')'
else:
ret += self.OutExpr(child[0])
return ret
if nt == 'FLD':
return self.OutExpr(child[0]) + '.' + expr['fld']
if nt in ('V--', 'V++'):
return self.OutExpr(child[0]) + ('++' if nt == 'V++' else '--')
if nt in ('--V', '++V'):
return ('++' if nt == '++V' else '--') + self.OutExpr(child[0])
if nt in self.extended_assignments:
lvalue = self.OutExpr(child[0])
return lvalue + ' = ' + lvalue + ' ' + nt[:-1] + ' (' + self.OutExpr(child[1]) + ')'
if nt == 'EXPRLIST':
return self.OutExprList(child)
if nt == 'SUBIDX':
return '(MISSING TYPE)' + self.OutExpr(child[0]) + '[' + self.OutExprList(child[1:]) + ']'
assert False, 'Internal error: expression type "' + nt + '" not handled' # pragma: no cover
def OutCode(self, node):
nt = node['nt']
if 'ch' in node:
child = node['ch']
else:
child = None
if nt == 'IF':
ret = self.dent()
while True:
ret += 'if (' + self.OutExpr(child[0]) + ')\n' + self.OutIndented(child[1])
if len(child) < 3:
return ret
if child[2]['nt'] != 'IF':
ret += self.dent() + 'else\n' + self.OutIndented(child[2])
return ret
ret += self.dent() + 'else '
node = child[2]
child = node['ch']
if nt == 'WHILE':
ret = self.dent() + 'while (' + self.OutExpr(child[0]) + ')\n'
ret += self.OutIndented(child[1])
return ret
if nt == 'DO':
ret = self.dent() + 'do\n'
ret += self.OutIndented(child[0])
return ret + self.dent() + 'while (' + self.OutExpr(child[1]) + ');\n'
if nt == 'FOR':
ret = self.dent() + 'for ('
ret += self.OutExpr(child[0])
ret += '; ' + self.OutExpr(child[1]) + '; '
ret += self.OutExpr(child[2])
ret += ')\n'
ret += self.OutIndented(child[3])
return ret
if nt == '@':
return self.dent() + '@' + self.FindName(node) + ';\n'
if nt == 'JUMP':
return self.dent() + 'jump ' + self.FindName(node) + ';\n'
if nt == 'STSW':
return self.dent() + 'state ' + self.FindName(node) + ';\n'
if nt == 'RETURN':
if child:
return self.dent() + 'return ' + self.OutExpr(child[0]) + ';\n'
return self.dent() + 'return;\n'
if nt == 'DECL':
ret = self.dent() + node['t'] + ' ' + self.FindName(node)
if child:
if 'orig' in child[0] and (child[0]['orig']['nt'] != 'IDENT'
or child[0]['orig']['name']
in self.symtab[child[0]['orig']['scope']]):
ret += ' = ' + self.OutExpr(child[0]['orig'])
else:
ret += ' = ' + self.OutExpr(child[0])
return ret + ';\n'
if nt == ';':
return self.dent() + ';\n'
if nt in ('STDEF', '{}'):
ret = ''
if nt == 'STDEF':
if node['name'] == 'default':
ret = self.dent() + 'default\n'
else:
ret = self.dent() + 'state ' + self.FindName(node) + '\n'
ret += self.dent() + '{\n'
self.indentlevel += 1
for stmt in node['ch']:
ret += self.OutCode(stmt)
self.indentlevel -= 1
return ret + self.dent() + '}\n'
if nt == 'FNDEF':
ret = self.dent()
if node['t'] is not None:
ret += node['t'] + ' '
ret += self.FindName(node) + '('
scope = node['pscope']
ret += ', '.join(typ + ' ' + self.FindName(name, scope)
for typ, name in zip(node['ptypes'], node['pnames']))
return ret + ')\n' + self.OutCode(child[0])
if nt == 'EXPR':
return self.dent() + self.OutExpr(child[0]) + ';\n'
if nt == 'LAMBDA':
return ''
assert False, "Internal error: node type not handled: " + nt # pragma: no cover
def output(self, treesymtab, options = ('optsigns','optfloats','warntabs')):
# Build a sorted list of dict entries
self.tree, self.symtab = treesymtab
# Grab options
self.optimize = 'optimize' in options
# These are optimization options that depend on the above:
self.optsigns = self.optimize and 'optsigns' in options
self.optfloats = self.optimize and 'optfloats' in options
self.foldconst = self.optimize and 'constfold' in options
self.warntabs = 'warntabs' in options
ret = ''
self.indent = ' '
self.indentlevel = 0
self.globalmode = False
self.listmode = False
for node in self.tree:
self.globalmode = node['nt'] == 'DECL'
ret += self.OutCode(node)
self.globalmode = False
return ret