mirror of
https://github.com/Sei-Lisa/LSL-PyOptimizer
synced 2025-07-01 23:58:20 +00:00
- Scratch TODO item: Change shouldbeXXX to asserts. - shoudlbeXXX(x) has been turned into assert isXXX(x). Affects lsl2json too. - New base functions: - compare (for == and !=) - less (for <, >, <=, >=) - minus() renamed to neg() for consistency. Affects testfuncs too. - add() now supports key+string and string+key. - Allow integers in place of floats. That has caused the addition of three utility functions: - ff (force float) - v2f (force floats in all components of a vector) - q2f (force floats in all components of a quaternion) Used everywhere where necessary. Special care was taken in a few funcs (llListFindList and maybe others) to ensure that lists containing vectors or quaternions which in turn contain integer components, behave as if they were floats, because LSL lists can not physically hold integer values as components of vectors/quats. This also fixes a case where if a large integer had more precision than a F32 (e.g. 16777217), the product/division would be more precise than what LSL returns. - Fix bugs of missing F32() in some places (llRotBetween, llEuler2Rot). - Some functions marked for moving in an incoming commit. - llList2CSV marked with a warning that it is not thread safe. That's a future TODO. - Document llListFindList better. - Make llListStatistics Use a more orthodox method to return the result for LIST_STAT_RANGE, LIST_STAT_MIN, LIST_STAT_MAX. - Make llAxisAngle2Rot use more precision from llVecNorm, by adding an optional truncation parameter in the latter. - Change order of some F32(Quaternion(...)) to not force so much instancing. - Bugfix: llVecNorm did not return a Vector.
1672 lines
52 KiB
Python
1672 lines
52 KiB
Python
# This module is used by the optimizer for resolving constant values.
|
|
|
|
# The functions it implements are all functions that always return the same result when given the same input, and that have no side effects.
|
|
|
|
# For example, llAbs() is here, but llFrand() is not, because it doesn't always return the same result.
|
|
|
|
# This implies that functions present in this module can be precomputed if their arguments are constants.
|
|
|
|
import re
|
|
from lslcommon import *
|
|
import lslcommon
|
|
from ctypes import c_float
|
|
import math
|
|
import hashlib
|
|
from base64 import b64encode, b64decode
|
|
|
|
|
|
# Regular expressions used along the code. They are needed mainly because
|
|
# Python lacks a C-like strtod/strtol (it comes close, but it is very picky
|
|
# with what it accepts). We need to extract the number part of a string, or
|
|
# Python will complain.
|
|
# Also, Base64 needs the correct count of characters (len mod 4 can't be = 1).
|
|
# The RE helps both in isolating the Base64 section and in trimming out the
|
|
# offending characters; it just doesn't help with padding, with which Python is
|
|
# also picky. We deal with that in the code by padding with '='*(-length&3).
|
|
|
|
# Despite what http://www.gnu.org/software/libc/manual/html_node/Parsing-of-Floats.html#Parsing-of-Floats
|
|
# says, NaN(chars) does not work in LSL (which is relevant in vectors).
|
|
# Note infinity vs. inf is necessary for parsing vectors & rotations,
|
|
# e.g. (vector)"<1,inf,infix>" is not valid but (vector)"<1,inf,infinity>" is
|
|
# as is (vector)"<1,inf,info>". The 1st gives <0,0,0>, the others <1,inf,inf>.
|
|
# The lookahead (?!i) is essential for parsing them that way without extra code.
|
|
# Note that '|' in REs is order-sensitive.
|
|
float_re = re.compile(ur'^\s*[+-]?(?:0(x)(?:[0-9a-f]+(?:\.[0-9a-f]*)?|\.[0-9a-f]+)(?:p[+-]?[0-9]+)?'
|
|
ur'|(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)(?:e[+-]?[0-9]+)?|infinity|inf(?!i)|nan)',
|
|
re.I)
|
|
|
|
int_re = re.compile(ur'^0(x)[0-9a-f]+|^\s*[+-]?[0-9]+', re.I)
|
|
|
|
key_re = re.compile(ur'^[0-9a-f]{8}(?:-[0-9a-f]{4}){4}[0-9a-f]{8}$', re.I)
|
|
|
|
b64_re = re.compile(ur'^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2,3})?')
|
|
|
|
ZERO_VECTOR = Vector((0.0, 0.0, 0.0))
|
|
ZERO_ROTATION = Quaternion((0.0, 0.0, 0.0, 1.0))
|
|
|
|
Infinity = float('inf')
|
|
NaN = float('nan')
|
|
|
|
class ELSLTypeMismatch(Exception):
|
|
def __init__(self):
|
|
super(self.__class__, self).__init__("Type mismatch")
|
|
|
|
class ELSLMathError(Exception):
|
|
def __init__(self):
|
|
super(self.__class__, self).__init__("Math Error")
|
|
|
|
class ELSLInvalidType(Exception):
|
|
def __init__(self):
|
|
super(self.__class__, self).__init__("Internal error: Invalid type")
|
|
|
|
# LSL types are translated to Python types as follows:
|
|
# * LSL string -> Python unicode
|
|
# * LSL key -> Key (class derived from unicode, no significant changes except __repr__)
|
|
# * LSL integer -> Python int (should never be long)
|
|
# * LSL float -> Python float
|
|
# * LSL vector -> Vector (class derived from Python tuple) of 3 numbers (float)
|
|
# * LSL rotation -> Quaternion (class derived from Python tuple) of 4 numbers (float)
|
|
# * LSL list -> Python list
|
|
|
|
Types = {
|
|
int: 1, # TYPE_INTEGER
|
|
float: 2, # TYPE_FLOAT
|
|
unicode: 3, # TYPE_STRING
|
|
Key: 4, # TYPE_KEY
|
|
Vector: 5, # TYPE_VECTOR
|
|
Quaternion: 6, # TYPE_ROTATION
|
|
#list: 7, # Undefined
|
|
}
|
|
|
|
# Utility functions
|
|
|
|
def F32(f, f32=True):
|
|
"""Truncate a float to have a precision equivalent to IEEE single"""
|
|
|
|
if not f32: # don't truncate
|
|
return f
|
|
|
|
if isinstance(f, tuple): # vector, quaternion
|
|
return f.__class__(F32(i) for i in f)
|
|
|
|
# Alternative to the big blurb below. This relies on the machine using IEEE-754, though.
|
|
|
|
# Using array:
|
|
#from array import array
|
|
#return array('f',(f,))[0]
|
|
|
|
# Using ctypes:
|
|
#from ctypes import c_float
|
|
return c_float(f).value
|
|
|
|
# # Another alternative. frexp and ldexp solve a lot (but are still troublesome):
|
|
# m, x = math.frexp(abs(f))
|
|
# if x > 128:
|
|
# return math.copysign(Infinity, f)
|
|
# if x < -149:
|
|
# return math.copysign(0.0, f)
|
|
# if x < -125:
|
|
# e = 1<<(x+149)
|
|
# else:
|
|
# e = 16777216.0
|
|
# # Special corner case with rounding near the maximum float (e.g. 3.4028236e38 gets rounded up, going out of range for a F32)
|
|
# if m*e >= 16777215.5 and x == 128:
|
|
# return math.copysign(Infinity, f)
|
|
# return math.ldexp(math.copysign(math.floor(m*e+0.5)/e, f), x)
|
|
|
|
|
|
# # Original old-fashioned strategy (watch out for the 16777215.5 bug above):
|
|
#
|
|
# if math.isinf(f) or math.isnan(f) or f==0:
|
|
# return f
|
|
# s = math.copysign(1, f)
|
|
# # This number may not be precise enough if Python had infinite precision, but it works for us.
|
|
# if f < 0.0000000000000000000000000000000000000000000007006492321624086132496:
|
|
# return math.copysign(0.0, s)
|
|
# f = abs(f)
|
|
#
|
|
#
|
|
# # TO DO: Check this boundary (this is 2^128)
|
|
# if f >= 340282366920938463463374607431768211456.0:
|
|
# return math.copysign(Infinity, s)
|
|
#
|
|
# # TO DO: Check this boundary (2^-126; hopefully there's some overlap and the precision can be cut)
|
|
# if f < 0.000000000000000000000000000000000000011754943508222875079687365372222456778186655567720875215087517062784172594547271728515625:
|
|
# # Denormal range
|
|
# f *= 713623846352979940529142984724747568191373312.0
|
|
# e = 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125 # 2^-149
|
|
# else:
|
|
# e = 1.0
|
|
# # This first loop is an optimization to get closer to the destination faster for very small numbers
|
|
# while f < 1.0:
|
|
# f *= 16777216.0
|
|
# e *= 0.000000059604644775390625
|
|
# # Go bit by bit
|
|
# while f < 8388608.0:
|
|
# f *= 2.0
|
|
# e *= 0.5
|
|
#
|
|
# #This first loop is an optimization to get closer to the destination faster for very big numbers
|
|
# while f >= 140737488355328.0:
|
|
# f *= 0.000000059604644775390625
|
|
# e *= 16777216.0
|
|
# # Go bit by bit
|
|
# while f >= 16777216.0:
|
|
# f *= 0.5
|
|
# e *= 2.0
|
|
#
|
|
# return math.copysign(math.floor(f+0.5)*e, s)
|
|
|
|
def S32(val):
|
|
"""Return a signed integer truncated to 32 bits (must deal with longs too)"""
|
|
if -2147483648 <= val <= 2147483647:
|
|
return int(val)
|
|
val &= 0xFFFFFFFF
|
|
if val > 2147483647:
|
|
return int(val - 4294967296)
|
|
return int(val)
|
|
|
|
def zstr(s):
|
|
if not isinstance(s, unicode):
|
|
raise ELSLInvalidType
|
|
|
|
zi = s.find(u'\0')
|
|
if zi < 0:
|
|
return s
|
|
return s.__class__(s[:zi])
|
|
|
|
def ff(x):
|
|
"""Force x to be a float"""
|
|
if type(x) == int:
|
|
x = F32(float(x))
|
|
return x
|
|
|
|
def q2f(q):
|
|
if type(q[0]) == type(q[1]) == type(q[2]) == type(q[3]) == float:
|
|
return q
|
|
return Quaternion((ff(q[0]), ff(q[1]), ff(q[2]), ff(q[3])))
|
|
|
|
def v2f(v):
|
|
if type(v[0]) == type(v[1]) == type(v[2]) == float:
|
|
return v
|
|
return Vector((ff(v[0]), ff(v[1]), ff(v[2])))
|
|
|
|
def f2s(val, DP=6):
|
|
if math.isinf(val):
|
|
return u'Infinity' if val > 0 else u'-Infinity'
|
|
if math.isnan(val):
|
|
return u'NaN'
|
|
if lslcommon.LSO or val == 0.:
|
|
return u'%.*f' % (DP, val) # deals with -0.0 too
|
|
|
|
# Format according to Mono rules (7 decimals after the DP, found experimentally)
|
|
s = u'%.*f' % (DP+7, val)
|
|
|
|
if s[:DP+3] == u'-0.' + '0'*DP and s[DP+3] < u'5':
|
|
return u'0.' + '0'*DP # underflown negatives return 0.0 except for -0.0 dealt with above
|
|
|
|
# Separate the sign
|
|
sgn = u'-' if s[0] == u'-' else u''
|
|
if sgn: s = s[1:]
|
|
|
|
# Look for position of first nonzero from the left
|
|
i = 0
|
|
while s[i] in u'0.':
|
|
i += 1
|
|
|
|
dot = s.index(u'.')
|
|
|
|
# Find rounding point. It's either the 7th digit after the first significant one,
|
|
# or the (DP+1)-th decimal after the period, whichever comes first.
|
|
digits = 0
|
|
while digits < 7:
|
|
if i >= dot+1+DP:
|
|
break
|
|
if i == dot:
|
|
i += 1
|
|
i += 1
|
|
digits += 1
|
|
|
|
if s[i if i != dot else i+1] >= u'5': # no rounding necessary
|
|
# Rounding - increment s[:i] storing result into news
|
|
new_s = u''
|
|
ci = i-1 # carry index
|
|
while ci >= 0 and s[ci] == u'9':
|
|
new_s = u'0' + new_s
|
|
ci -= 1
|
|
if ci == dot:
|
|
ci -= 1 # skip over the dot
|
|
new_s = u'.' + new_s # but add it to new_s
|
|
if ci < 0:
|
|
new_s = u'1' + new_s # 9...9 -> 10...0
|
|
else:
|
|
# increment s[ci] e.g. 43999 -> 44000
|
|
new_s = s[:ci] + chr(ord(s[ci])+1) + new_s
|
|
else:
|
|
new_s = s[:i]
|
|
|
|
if i <= dot:
|
|
return sgn + new_s + u'0'*(dot-i) + u'.' + u'0'*DP
|
|
return sgn + new_s + u'0'*(dot+1+DP-i)
|
|
|
|
def vr2s(v, DP=6):
|
|
if type(v) == Vector:
|
|
return u'<'+f2s(v[0],DP)+u', '+f2s(v[1],DP)+u', '+f2s(v[2],DP)+u'>'
|
|
return u'<'+f2s(v[0],DP)+u', '+f2s(v[1],DP)+u', '+f2s(v[2],DP)+u', '+f2s(v[3],DP)+u'>'
|
|
|
|
def InternalTypecast(val, out, InList, f32):
|
|
"""Type cast val to out, following LSL rules.
|
|
|
|
To avoid mutual recursion, it deals with everything except lists. That way
|
|
it does not need to call InternalList2Strings which needs to call it.
|
|
"""
|
|
tval = type(val)
|
|
# The case tval == list is handled in typecast() below.
|
|
if out == list:
|
|
return [val]
|
|
|
|
if tval == int: # integer
|
|
val = S32(val)
|
|
if out == int: return val
|
|
if out == float: return F32(val, f32)
|
|
if out == unicode: return unicode(val)
|
|
raise ELSLTypeMismatch
|
|
|
|
if tval == float:
|
|
val = F32(val, f32)
|
|
if out == int: return S32(int(val)) if val >= -2147483648.0 and val < 2147483648.0 else -2147483648
|
|
if out == float: return val
|
|
if out == unicode: return f2s(val, 6)
|
|
raise ELSLTypeMismatch
|
|
|
|
if tval == Vector:
|
|
val = v2f(val)
|
|
if out == Vector: return val
|
|
if out == unicode: return vr2s(val, 6 if InList else 5)
|
|
raise ELSLTypeMismatch
|
|
if tval == Quaternion:
|
|
val = q2f(val)
|
|
if out == Quaternion: return val
|
|
if out == unicode: return vr2s(val, 6 if InList else 5)
|
|
raise ELSLTypeMismatch
|
|
if tval == Key: # key
|
|
if out == Key: return zstr(val)
|
|
if out == unicode: return zstr(unicode(val))
|
|
raise ELSLTypeMismatch
|
|
|
|
if tval == unicode:
|
|
val = zstr(val)
|
|
if out == unicode: return val
|
|
if out == Key: return Key(val)
|
|
if out == float:
|
|
# Clean up the string for Picky Python
|
|
match = float_re.match(val)
|
|
if match is None:
|
|
return 0.0
|
|
if match.group(1):
|
|
return F32(float.fromhex(match.group(0)), f32)
|
|
return F32(float(match.group(0)), f32)
|
|
if out == int:
|
|
match = int_re.match(val)
|
|
if match is None:
|
|
return 0
|
|
val = match.group(0)
|
|
if match.group(1):
|
|
val = int(val, 0)
|
|
else:
|
|
val = int(val)
|
|
if -4294967295 <= val <= 4294967295:
|
|
return S32(val)
|
|
return -1
|
|
if out in (Vector, Quaternion):
|
|
Z,dim = (ZERO_VECTOR,3) if out == Vector else (ZERO_ROTATION,4)
|
|
ret = []
|
|
if val[0:1] != u'<':
|
|
return Z
|
|
val = val[1:]
|
|
for _ in range(dim):
|
|
match = float_re.match(val)
|
|
if match is None:
|
|
return Z
|
|
if match.group(1):
|
|
ret.append(F32(float.fromhex(match.group(0)), f32))
|
|
else:
|
|
ret.append(F32(float(match.group(0)), f32))
|
|
if len(ret) < dim:
|
|
i = match.end()
|
|
if val[i:i+1] != u',':
|
|
return Z
|
|
val = val[i+1:]
|
|
return out(ret) # convert type
|
|
|
|
# To avoid mutual recursion, this was moved:
|
|
#if tval == list: # etc.
|
|
|
|
raise ELSLInvalidType
|
|
|
|
def InternalList2Strings(val):
|
|
"""Convert a list of misc.items to a list of strings."""
|
|
ret = []
|
|
for elem in val:
|
|
ret.append(InternalTypecast(elem, unicode, InList=True, f32=True))
|
|
return ret
|
|
|
|
def typecast(val, out, InList=False, f32=True):
|
|
"""Type cast an item. Calls InternalList2Strings for lists and
|
|
defers the rest to InternalTypecast.
|
|
"""
|
|
if type(val) == list:
|
|
if out == list:
|
|
return val # NOTE: We're not duplicating it here.
|
|
if out == unicode:
|
|
return u''.join(InternalList2Strings(val))
|
|
raise ELSLTypeMismatch
|
|
return InternalTypecast(val, out, InList, f32)
|
|
|
|
def neg(val):
|
|
if type(val) in (int, float):
|
|
if type(val) == int and val == -2147483648:
|
|
return val
|
|
return -val
|
|
if isinstance(val, tuple):
|
|
return val.__class__(-f for f in val)
|
|
raise ELSLTypeMismatch
|
|
|
|
def add(a, b, f32=True):
|
|
# defined for:
|
|
# scalar+scalar
|
|
# vector+vector
|
|
# rotation+rotation
|
|
# string+string
|
|
# (our extension:) key+string, string+key
|
|
# list+any
|
|
# any+list
|
|
ta=type(a)
|
|
tb=type(b)
|
|
if ta in (int, float) and tb in (int, float):
|
|
if ta == tb == int:
|
|
return S32(a+b)
|
|
return F32(ff(a)+ff(b), f32)
|
|
|
|
if ta == tb in (list, unicode):
|
|
return a + b
|
|
# string + key, key + string are allowed here
|
|
if ta in (unicode, Key) and tb in (unicode, Key):
|
|
return a + b
|
|
if ta == list:
|
|
return a + [b]
|
|
if tb == list:
|
|
return [a] + b
|
|
if ta == tb in (Vector, Quaternion):
|
|
return F32(ta(ff(a[i])+ff(b[i]) for i in range(len(a))), f32)
|
|
raise ELSLTypeMismatch
|
|
|
|
def sub(a, b, f32=True):
|
|
# defined for:
|
|
# scalar+scalar
|
|
# vector+vector
|
|
# rotation+rotation
|
|
ta=type(a)
|
|
tb=type(b)
|
|
if ta in (int, float) and tb in (int, float):
|
|
if ta == tb == int:
|
|
return S32(a-b)
|
|
return F32(ff(a)-ff(b), f32)
|
|
if ta == tb in (Vector, Quaternion):
|
|
return F32(ta(ff(a[i])-ff(b[i]) for i in range(len(a))), f32)
|
|
raise ELSLTypeMismatch
|
|
|
|
def mul(a, b, f32=True):
|
|
# defined for:
|
|
# scalar*scalar
|
|
# scalar*vector
|
|
# vector*scalar
|
|
# vector*vector
|
|
# vector*rotation
|
|
# rotation*rotation
|
|
ta = type(a)
|
|
tb = type(b)
|
|
# If either type is string, list, or key, error
|
|
if ta in (unicode, list, Key) or tb in (unicode, list, Key):
|
|
raise ELSLTypeMismatch
|
|
# only int, float, vector, quaternion here
|
|
if ta in (int, float):
|
|
if tb in (int, float):
|
|
if ta == tb == int:
|
|
return S32(a*b)
|
|
return F32(ff(a)*ff(b), f32)
|
|
if tb != Vector:
|
|
# scalar * quat is not defined
|
|
raise ELSLTypeMismatch
|
|
# scalar * vector
|
|
a = ff(a)
|
|
b = v2f(b)
|
|
return Vector(F32((a*b[0], a*b[1], a*b[2]), f32))
|
|
|
|
if ta == Quaternion:
|
|
# quat * scalar and quat * vector are not defined
|
|
if tb != Quaternion:
|
|
raise ELSLTypeMismatch
|
|
a = q2f(a)
|
|
b = q2f(b)
|
|
# quaternion product - product formula reversed
|
|
return Quaternion(F32((a[0] * b[3] + a[3] * b[0] + a[2] * b[1] - a[1] * b[2],
|
|
a[1] * b[3] - a[2] * b[0] + a[3] * b[1] + a[0] * b[2],
|
|
a[2] * b[3] + a[1] * b[0] - a[0] * b[1] + a[3] * b[2],
|
|
a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2]), f32))
|
|
|
|
if ta != Vector:
|
|
raise ELSLInvalidType # Should never happen at this point
|
|
|
|
if tb in (int, float):
|
|
a = v2f(a)
|
|
b = ff(b)
|
|
return Vector(F32((a[0]*b, a[1]*b, a[2]*b), f32))
|
|
|
|
if tb == Vector:
|
|
# scalar product
|
|
a = v2f(a)
|
|
b = v2f(b)
|
|
return F32(math.fsum((a[0]*b[0], a[1]*b[1], a[2]*b[2])), f32)
|
|
|
|
if tb != Quaternion:
|
|
raise ELSLInvalidType # Should never happen at this point
|
|
|
|
# vector * quaternion: perform conjugation
|
|
#v = mul(Quaternion((-b[0], -b[1], -b[2], b[3])), mul(Quaternion((a[0], a[1], a[2], 0.0)), b, f32=False))
|
|
#return Vector((v[0], v[1], v[2]))
|
|
# this is more precise as it goes directly to the gist of it:
|
|
a = v2f(a)
|
|
b = q2f(b)
|
|
return Vector(F32((
|
|
math.fsum(( a[0]*(b[0]*b[0]-b[1]*b[1]-b[2]*b[2]+b[3]*b[3]),
|
|
a[1]*2*(b[0]*b[1]-b[2]*b[3]),
|
|
a[2]*2*(b[0]*b[2]+b[1]*b[3]))),
|
|
math.fsum(( a[0]*2*(b[0]*b[1]+b[2]*b[3]),
|
|
-a[1]*(b[0]*b[0]-b[1]*b[1]+b[2]*b[2]-b[3]*b[3]), # notice minus sign
|
|
a[2]*2*(b[1]*b[2]-b[0]*b[3]))),
|
|
math.fsum(( a[0]*2*(b[0]*b[2]-b[1]*b[3]),
|
|
a[1]*2*(b[1]*b[2]+b[0]*b[3]),
|
|
-a[2]*(b[0]*b[0]+b[1]*b[1]-b[2]*b[2]-b[3]*b[3]))) # notice minus sign
|
|
), f32))
|
|
|
|
def div(a, b, f32=True):
|
|
# defined for:
|
|
# scalar/scalar
|
|
# vector/scalar
|
|
# vector/rotation
|
|
# rotation/rotation
|
|
ta = type(a)
|
|
tb = type(b)
|
|
if tb in (int, float):
|
|
if b == 0:
|
|
raise ELSLMathError
|
|
if ta in (int, float):
|
|
if math.isnan(a): # NaN/anything gives math error
|
|
raise ELSLMathError
|
|
if ta == int and tb == int:
|
|
# special case
|
|
if a == -2147483648 and b == -1:
|
|
return a # this could be handled by using S32 but it's probably faster this way
|
|
if (a < 0) ^ (b < 0):
|
|
# signs differ - Python rounds towards -inf, we need rounding towards 0
|
|
return - a//-b # that's -(a//-b) not (-a)//-b
|
|
return a//b
|
|
return F32(ff(a)/ff(b), f32)
|
|
if ta == Vector:
|
|
a = v2f(a)
|
|
b = ff(b)
|
|
return Vector(F32((a[0]/b, a[1]/b, a[2]/b), f32))
|
|
if tb == Quaternion: # division by a rotation is multiplication by the conjugate of the rotation
|
|
# defer the remaining type checks to mul()
|
|
return mul(a, (-b[0],-b[1],-b[2],b[3]), f32)
|
|
raise ELSLTypeMismatch
|
|
|
|
def mod(a, b, f32=True):
|
|
# defined only for integers and vectors
|
|
if type(a) == type(b) == int:
|
|
if a < 0:
|
|
return int(-((-a) % abs(b)))
|
|
return int(a % abs(b))
|
|
if type(a) == type(b) == Vector:
|
|
# cross product
|
|
a = v2f(a)
|
|
b = v2f(b)
|
|
return F32((a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]), f32)
|
|
|
|
raise ELSLTypeMismatch
|
|
|
|
def compare(a, b, Eq = True):
|
|
"""Calculate a == b when Eq is True, or a != b when not"""
|
|
|
|
# Defined for all types as long as there's one that can be cast to the other
|
|
ta = type(a)
|
|
tb = type(b)
|
|
if ta in (int, float) and tb in (int, float):
|
|
# we trust that NaN == NaN is False
|
|
if type(a) != type(b):
|
|
ret = ff(a) == ff(b)
|
|
else:
|
|
ret = a == b
|
|
return int(ret) if Eq else 1-ret
|
|
if ta in (unicode, Key) and tb in (unicode, key):
|
|
ret = 0 if a == b else 1 if a > b or not lslcommon.LSO else -1
|
|
return int(not ret) if Eq else ret
|
|
if ta == tb in (Vector, Quaternion):
|
|
for ae,be in zip(a,b):
|
|
if ae != be:
|
|
return int(not Eq)
|
|
return int(Eq)
|
|
if ta == tb == list:
|
|
ret = len(a) - len(b)
|
|
return int(not ret) if Eq else ret
|
|
raise ELSLTypeMismatch
|
|
|
|
def less(a, b):
|
|
"""Calculate a < b. The rest can be derived by swapping components and by
|
|
negating: a > b is less(b,a); a <= b is 1-less(b,a); a >= b is 1-less(a,b).
|
|
"""
|
|
if type(a) == type(b) == int:
|
|
return int(a < b)
|
|
if type(a) in (int, float) and type(b) in (int, float):
|
|
return int(ff(a) < ff(b))
|
|
raise ELSLTypeMismatch
|
|
|
|
def isinteger(x):
|
|
return type(x) == int
|
|
|
|
def isfloat(x):
|
|
return type(x) in (float, int)
|
|
|
|
def isvector(x):
|
|
return type(x) == Vector and len(x) == 3 and type(x[0]) == type(x[1]) == type(x[2]) == float
|
|
|
|
def isrotation(x):
|
|
return type(x) == Quaternion and len(x) == 4 and type(x[0]) == type(x[1]) == type(x[2]) == type(x[3]) == float
|
|
|
|
def isstring(x):
|
|
return type(x) in (unicode, Key)
|
|
|
|
def iskey(x):
|
|
return type(x) in (Key, unicode)
|
|
|
|
def islist(x):
|
|
return type(x) == list
|
|
|
|
#
|
|
# LSL-compatible computation functions
|
|
#
|
|
|
|
def llAbs(i):
|
|
assert isinteger(i)
|
|
return abs(i)
|
|
|
|
def llAcos(f):
|
|
assert isfloat(f)
|
|
try:
|
|
return F32(math.acos(ff(f)))
|
|
except ValueError:
|
|
return NaN
|
|
|
|
def llAngleBetween(r1, r2):
|
|
assert isrotation(r1)
|
|
assert isrotation(r2)
|
|
r1 = q2f(r1)
|
|
r2 = q2f(r2)
|
|
return llRot2Angle(div(r1, r2, f32=False))
|
|
|
|
def llAsin(f):
|
|
assert isfloat(f)
|
|
try:
|
|
return F32(math.asin(ff(f)))
|
|
except ValueError:
|
|
return NaN
|
|
|
|
def llAtan2(y, x):
|
|
assert isfloat(y)
|
|
assert isfloat(x)
|
|
return F32(math.atan2(ff(y), ff(x)))
|
|
|
|
def llAxes2Rot(fwd, left, up):
|
|
assert isvector(fwd)
|
|
assert isvector(left)
|
|
assert isvector(up)
|
|
|
|
fwd = v2f(fwd)
|
|
left = v2f(left)
|
|
up = v2f(up)
|
|
|
|
# One of the hardest.
|
|
|
|
t = math.fsum((fwd[0], left[1], up[2]))
|
|
if t >= 0.: # no danger of division by zero or negative roots
|
|
r = math.sqrt(1. + t)
|
|
s = 0.5/r
|
|
|
|
# For the case of ix+jy+kz > 0, it can return an unnormalized quaternion
|
|
return Quaternion((s*(left[2]-up[1]), s*(up[0]-fwd[2]), s*(fwd[1]-left[0]), r*0.5))
|
|
|
|
# Find a positive combo. LSL normalizes the result in these cases only, so we do the same.
|
|
|
|
if left[1] <= fwd[0] >= up[2]: # is fwd[0] the greatest?
|
|
r = math.sqrt(1. + fwd[0] - left[1] - up[2])
|
|
s = 0.5/r
|
|
q = (r*0.5, s*(fwd[1]+left[0]), s*(up[0]+fwd[2]), s*(left[2]-up[1]))
|
|
|
|
elif fwd[0] <= left[1] >= up[2]: # is left[1] the greatest?
|
|
r = math.sqrt(1. - fwd[0] + left[1] - up[2])
|
|
s = 0.5/r
|
|
q = (s*(fwd[1]+left[0]), r*0.5, s*(left[2]+up[1]), s*(up[0]-fwd[2]))
|
|
|
|
else:
|
|
# Only one case remaining: up[2] is the greatest
|
|
r = math.sqrt(1. - fwd[0] - left[1] + up[2])
|
|
s = 0.5/r
|
|
q = (s*(up[0]+fwd[2]), s*(left[2]+up[1]), r*0.5, s*(fwd[1]-left[0]))
|
|
|
|
# Normalize
|
|
if q == (0.,0.,0.,0.):
|
|
return Quaternion((0.,0.,0.,1.))
|
|
mag = math.fsum((q[0]*q[0], q[1]*q[1], q[2]*q[2], q[3]*q[3]))
|
|
return Quaternion(F32((q[0]/mag, q[1]/mag, q[2]/mag, q[3]/mag)))
|
|
|
|
|
|
def llAxisAngle2Rot(axis, angle):
|
|
assert isvector(axis)
|
|
assert isfloat(angle)
|
|
axis = llVecNorm(axis, False)
|
|
if axis == ZERO_VECTOR:
|
|
angle = 0.
|
|
c = math.cos(ff(angle)*0.5)
|
|
s = math.sin(ff(angle)*0.5)
|
|
return Quaternion(F32((axis[0]*s, axis[1]*s, axis[2]*s, c)))
|
|
|
|
# NOTE: This one does not always return the same value in LSL, but no one should depend
|
|
# on the garbage bytes returned. We implement it deterministically.
|
|
def llBase64ToInteger(s):
|
|
assert isstring(s)
|
|
if len(s) > 8:
|
|
return 0
|
|
s = b64_re.match(s).group()
|
|
i = len(s)
|
|
s = (b64decode(s + u'='*(-i & 3)) + b'\0\0\0\0')[:4] # actually the last 3 bytes should be garbage
|
|
i = ord(s[0]) if s[0] < b'\x80' else ord(s[0])-256
|
|
return (i<<24)+(ord(s[1])<<16)+(ord(s[2])<<8)+ord(s[3])
|
|
|
|
# TODO: move
|
|
def InternalUTF8toString(s):
|
|
# Note Mono and LSO behave differently here.
|
|
# LSO *CAN* store invalid UTF-8.
|
|
# For example, llEscapeURL(llUnescapeURL("%80%C3")) gives "%80%C3" in LSO.
|
|
# (But llEscapeURL(llUnescapeURL("%80%00%C3")) still gives "%80")
|
|
# We don't emulate it, we've built this with Unicode strings in mind.
|
|
|
|
# decode(..., 'replace') replaces invalid chars with U+FFFD which is not
|
|
# what LSL does (LSL replaces with '?'). Since U+FFFD must be preserved if
|
|
# present, we need to write our own algorithm.
|
|
|
|
# Problem: Aliases are not valid UTF-8 for LSL, and code points above
|
|
# U+10FFFF are not supported. Both things complicate the alg a bit.
|
|
|
|
ret = u''
|
|
partialchar = b''
|
|
pending = 0
|
|
for c in s:
|
|
o = ord(c)
|
|
if partialchar:
|
|
if 0x80 <= o < 0xC0 and (
|
|
partialchar[1:2]
|
|
or b'\xC2' <= partialchar < b'\xF4' and partialchar not in b'\xE0\xF0'
|
|
or partialchar == b'\xE0' and o >= 0xA0
|
|
or partialchar == b'\xF0' and o >= 0x90
|
|
or partialchar == b'\xF4' and o < 0x90
|
|
):
|
|
partialchar += c
|
|
pending -= 1
|
|
if pending == 0:
|
|
ret += partialchar.decode('utf8')
|
|
partialchar = b''
|
|
c = c
|
|
# NOTE: Without the above line, the following one hits a bug in
|
|
# python-coverage. It IS executed but not detected.
|
|
continue
|
|
ret += u'?' * len(partialchar)
|
|
partialchar = b''
|
|
# fall through to process current character
|
|
if o >= 0xC2 and o <= 0xF4:
|
|
partialchar = c
|
|
pending = 1 if o < 0xE0 else 2 if o < 0xF0 else 3
|
|
elif o >= 0x80:
|
|
ret += u'?'
|
|
else:
|
|
ret += c.decode('utf8')
|
|
|
|
if partialchar:
|
|
ret += u'?' * len(partialchar)
|
|
|
|
return zstr(ret)
|
|
|
|
def llBase64ToString(s):
|
|
assert isstring(s)
|
|
s = b64_re.match(s).group(0)
|
|
return InternalUTF8toString(b64decode(s + u'='*(-len(s)&3)))
|
|
|
|
def llCSV2List(s):
|
|
assert isstring(s)
|
|
|
|
bracketlevel = 0
|
|
lastwascomma = False
|
|
lastidx = 0
|
|
i = 0
|
|
ret = []
|
|
for c in s:
|
|
if bracketlevel:
|
|
# ignore ',', focus on nesting level
|
|
if c == u'<':
|
|
bracketlevel += 1
|
|
elif c == u'>':
|
|
bracketlevel -= 1
|
|
elif lastwascomma and c == u' ': # eat space after comma
|
|
lastwascomma = False
|
|
lastidx = i+1
|
|
else:
|
|
if c == u',':
|
|
lastwascomma = True
|
|
ret.append(s[lastidx:i])
|
|
lastidx = i+1
|
|
elif c == u'<':
|
|
bracketlevel += 1
|
|
i += 1
|
|
ret.append(s[lastidx:i])
|
|
return ret
|
|
|
|
def llCeil(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isnan(f) or math.isinf(f) or f >= 2147483648.0 or f < -2147483648.0:
|
|
return -2147483648
|
|
return int(math.ceil(f))
|
|
|
|
def llCos(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isinf(f):
|
|
return NaN
|
|
if -9223372036854775808.0 <= f < 9223372036854775808.0:
|
|
return F32(math.cos(f))
|
|
return f
|
|
|
|
# TODO: Move
|
|
# The code of llDeleteSubList and llDeleteSubString is identical except for the type check
|
|
def InternalDeleteSubSequence(val, start, end):
|
|
assert isinteger(start)
|
|
assert isinteger(end)
|
|
L = len(val)
|
|
if L == 0:
|
|
return val[:]
|
|
|
|
# Python does much of the same thing here, which helps a lot
|
|
if (start+L if start < 0 else start) <= (end+L if end < 0 else end):
|
|
if end == -1: end += L
|
|
return val[:start] + val[end+1:]
|
|
if end == -1: end += L
|
|
return val[end+1:start] # Exclusion range
|
|
|
|
# TODO: Move
|
|
# The code of llGetSubString and llList2List is identical except for the type check
|
|
def InternalGetSubSequence(val, start, end):
|
|
assert isinteger(start)
|
|
assert isinteger(end)
|
|
L = len(val)
|
|
if L == 0:
|
|
return val[:]
|
|
|
|
# Python does much of the same thing as LSL here, which helps a lot
|
|
if start < 0: start += L
|
|
if end < 0: end += L
|
|
if start > end:
|
|
if end == -1: end += L
|
|
return val[:end+1] + val[start:] # Exclusion range
|
|
if end == -1: end += L
|
|
return val[start:end+1]
|
|
|
|
def llDeleteSubList(lst, start, end):
|
|
# This acts as llList2List if there's wraparound
|
|
assert islist(lst)
|
|
return InternalDeleteSubSequence(lst, start, end)
|
|
|
|
def llDeleteSubString(s, start, end):
|
|
# This acts as llGetSubString if there's wraparound
|
|
assert isstring(s)
|
|
return InternalDeleteSubSequence(s, start, end)
|
|
|
|
def llDumpList2String(lst, sep):
|
|
assert islist(lst)
|
|
assert isstring(sep)
|
|
return sep.join(InternalList2Strings(lst))
|
|
|
|
def llEscapeURL(s):
|
|
assert isstring(s)
|
|
s = s.encode('utf8') # get bytes
|
|
ret = u''
|
|
for c in s:
|
|
if b'A' <= c <= b'Z' or b'a' <= c <= b'z' or b'0' <= c <= b'9':
|
|
ret += c.encode('utf8')
|
|
else:
|
|
ret += u'%%%02X' % ord(c)
|
|
return ret
|
|
|
|
def llEuler2Rot(v):
|
|
assert isvector(v)
|
|
v = v2f(v)
|
|
c0 = math.cos(v[0]*0.5)
|
|
s0 = math.sin(v[0]*0.5)
|
|
c1 = math.cos(v[1]*0.5)
|
|
s1 = math.sin(v[1]*0.5)
|
|
c2 = math.cos(v[2]*0.5)
|
|
s2 = math.sin(v[2]*0.5)
|
|
|
|
return Quaternion(F32((s0 * c1 * c2 + c0 * s1 * s2,
|
|
c0 * s1 * c2 - s0 * c1 * s2,
|
|
c0 * c1 * s2 + s0 * s1 * c2,
|
|
c0 * c1 * c2 - s0 * s1 * s2)))
|
|
|
|
def llFabs(f):
|
|
assert isfloat(f)
|
|
return math.fabs(ff(f))
|
|
|
|
def llFloor(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isnan(f) or math.isinf(f) or f >= 2147483648.0 or f < -2147483648.0:
|
|
return -2147483648
|
|
return int(math.floor(f))
|
|
|
|
# not implemented as it does not give the same output for the same input
|
|
#def llFrand(lim):
|
|
|
|
# not implemented as it does not give the same output for the same input
|
|
#def llGenerateKey():
|
|
|
|
def llGetListEntryType(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
return Types(lst[pos])
|
|
except IndexError:
|
|
return 0 # TYPE_INVALID
|
|
except KeyError:
|
|
raise ELSLInvalidType
|
|
|
|
def llGetListLength(lst):
|
|
assert islist(lst)
|
|
return len(lst)
|
|
|
|
def llGetSubString(s, start, end):
|
|
assert isstring(s)
|
|
return InternalGetSubSequence(s, start, end)
|
|
|
|
def llInsertString(s, pos, src):
|
|
assert isstring(s)
|
|
assert isinteger(pos)
|
|
assert isstring(src)
|
|
if pos < 0: pos = 0 # llInsertString does not support negative indices
|
|
return s[:pos] + src + s[pos:]
|
|
|
|
def llIntegerToBase64(x):
|
|
assert isinteger(x)
|
|
return b64encode(chr((x>>24)&255) + chr((x>>16)&255) + chr((x>>8)&255) + chr(x&255)).decode('utf8')
|
|
|
|
def llList2CSV(lst):
|
|
assert islist(lst)
|
|
# WARNING: FIXME: NOT THREAD SAFE
|
|
tmp = lslcommon.LSO
|
|
lslcommon.LSO = True # Use LSO rules for float to string conversion
|
|
ret = u', '.join(InternalList2Strings(lst))
|
|
lslcommon.LSO = tmp
|
|
return ret
|
|
|
|
def llList2Float(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
elem = lst[pos]
|
|
if type(elem) == float:
|
|
return elem
|
|
if type(elem) in (int, unicode):
|
|
return InternalTypecast(elem, float, InList=True, f32=True)
|
|
except IndexError:
|
|
pass
|
|
return 0.0
|
|
|
|
def llList2Integer(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
elem = lst[pos]
|
|
if type(elem) == int:
|
|
return elem
|
|
if type(elem) in (float, unicode):
|
|
return InternalTypecast(elem, int, InList=True, f32=True)
|
|
return 0
|
|
except IndexError:
|
|
return 0
|
|
|
|
def llList2Key(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
elem = lst[pos]
|
|
if type(elem) == Key:
|
|
return elem
|
|
if type(elem) == unicode:
|
|
return Key(elem)
|
|
except IndexError:
|
|
pass
|
|
if lslcommon.LSO:
|
|
return Key(u'00000000-0000-0000-0000-000000000000') # NULL_KEY
|
|
return Key(u'')
|
|
|
|
def llList2List(lst, start, end):
|
|
assert islist(lst)
|
|
assert isinteger(start)
|
|
assert isinteger(end)
|
|
return InternalGetSubSequence(lst, start, end)
|
|
|
|
def llList2ListStrided(lst, start, end, stride):
|
|
assert islist(lst)
|
|
assert isinteger(start)
|
|
assert isinteger(end)
|
|
assert isinteger(stride)
|
|
stride = abs(stride) if stride != 0 else 1
|
|
L = len(lst)
|
|
if start < 0: start += L
|
|
if end < 0: end += L
|
|
if start > end:
|
|
start = 0
|
|
end = L-1
|
|
# start is rounded up to ceil(start/stride)*stride
|
|
start = ((start+stride-1)/stride)*stride
|
|
# end is rounded down to floor(start/stride)*stride
|
|
end = (end/stride)*stride
|
|
|
|
return lst[start:end+1:stride]
|
|
|
|
def llList2Rot(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
elem = lst[pos]
|
|
if type(elem) == Quaternion:
|
|
# The list should not contain integer quaternion components, but
|
|
# we don't control that here. Instead we return the integer-less
|
|
# quaternion when asked.
|
|
return q2f(elem)
|
|
except IndexError:
|
|
pass
|
|
return ZERO_ROTATION
|
|
|
|
def llList2String(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
return InternalTypecast(lst[pos], unicode, InList=True, f32=True)
|
|
except IndexError:
|
|
pass
|
|
return u''
|
|
|
|
def llList2Vector(lst, pos):
|
|
assert islist(lst)
|
|
assert isinteger(pos)
|
|
try:
|
|
elem = lst[pos]
|
|
if type(elem) == Vector:
|
|
# The list should not contain integer vector components, but
|
|
# we don't control that here. Instead we return the integer-less
|
|
# vector when asked.
|
|
return v2q(elem)
|
|
except IndexError:
|
|
pass
|
|
return ZERO_VECTOR
|
|
|
|
def llListFindList(lst, elems):
|
|
assert islist(lst)
|
|
assert islist(elems)
|
|
# NaN is found in floats, but not in vectors
|
|
L1 = len(lst)
|
|
L2 = len(elems)
|
|
if L2 > L1:
|
|
return -1 # can't find a sublist longer than the original list
|
|
if L2 == 0:
|
|
return 0 # empty list is always found at position 0
|
|
for i in xrange(L1-L2+1):
|
|
for j in xrange(L2):
|
|
e1 = lst[i+j]
|
|
e2 = elems[j]
|
|
if type(e1) == type(e2) == float:
|
|
if e1 == e2:
|
|
continue
|
|
# Exceptionally, NaN equals NaN
|
|
if math.isnan(e1) and math.isnan(e2):
|
|
continue
|
|
# Mismatch
|
|
break
|
|
elif type(e1) == type(e2) in (Vector, Quaternion):
|
|
# Act as if the list's vector/quat was all floats, even if not
|
|
if type(e1) == Vector:
|
|
e1 = v2f(e1)
|
|
e2 = v2f(e2)
|
|
else:
|
|
e1 = q2f(e1)
|
|
e2 = q2f(e2)
|
|
# Unfortunately, Python fails to consider (NaN,) != (NaN,) sometimes
|
|
# so we need to implement our own test
|
|
for e1e,e2e in zip(e1,e2):
|
|
if e1e != e2e: # NaNs are considered different to themselves here as normal
|
|
# Mismatch in vector/quaternion sub-element
|
|
break
|
|
else:
|
|
# No mismatch in any sub-element, try next list element
|
|
continue
|
|
break # discrepancy found
|
|
elif type(e1) != type(e2) or e1 != e2:
|
|
break # mismatch
|
|
else:
|
|
# no mismatch
|
|
return i
|
|
return -1
|
|
|
|
def llListInsertList(lst, elems, pos):
|
|
assert islist(lst)
|
|
assert islist(elems)
|
|
assert isinteger(pos)
|
|
# Unlike llInsertString, this function does support negative indices.
|
|
return lst[:pos] + elems + lst[pos:]
|
|
|
|
# not implemented as it does not give the same output for the same input
|
|
#def llListRandomize(x):
|
|
|
|
def llListReplaceList(lst, elems, start, end):
|
|
assert islist(lst)
|
|
assert islist(elems)
|
|
assert isinteger(start)
|
|
assert isinteger(end)
|
|
L = len(lst)
|
|
if (start + L if start < 0 else start) > (end + L if end < 0 else end):
|
|
# Exclusion range. Appends elems at 'start' i.e. at end :)
|
|
if end == -1: end += L
|
|
return lst[end+1:start] + elems
|
|
if end == -1: end += L
|
|
return lst[:start] + elems + lst[end+1:]
|
|
|
|
def llListSort(lst, stride, asc):
|
|
assert islist(lst)
|
|
assert isinteger(stride)
|
|
assert isinteger(asc)
|
|
lst = lst[:] # make a copy
|
|
L = len(lst)
|
|
if stride < 1: stride = 1
|
|
if L % stride:
|
|
return lst
|
|
for i in xrange(0, L-stride, stride):
|
|
# Optimized by caching the element in the outer loop AND after swapping.
|
|
a = lst[i]
|
|
ta = type(a)
|
|
if ta == Vector:
|
|
a = v2f(a) # list should contain vectors made only of floats
|
|
a = a[0]*a[0] + a[1]*a[1] + a[2]*a[2]
|
|
for j in xrange(i+stride, L, stride):
|
|
b = lst[j]
|
|
tb = type(b)
|
|
gt = False
|
|
if ta == tb:
|
|
if tb == Vector:
|
|
b = v2f(b)
|
|
gt = not (a <= b[0]*b[0] + b[1]*b[1] + b[2]*b[2])
|
|
# (note NaNs compare as > thus the reversed condition!)
|
|
elif tb != Quaternion:
|
|
gt = not (a <= b) # float integer, string, key all compare with this
|
|
# (note NaNs compare as > thus the reversed condition!)
|
|
if gt ^ (asc != 1):
|
|
# swap
|
|
lst[i:i+stride],lst[j:j+stride] = lst[j:j+stride],lst[i:i+stride]
|
|
# Re-cache
|
|
a = lst[i]
|
|
ta = type(a)
|
|
if ta == Vector:
|
|
a = v2f(a)
|
|
a = a[0]*a[0] + a[1]*a[1] + a[2]*a[2]
|
|
return lst
|
|
|
|
def llListStatistics(op, lst):
|
|
assert isinteger(op)
|
|
assert islist(lst)
|
|
|
|
nums = []
|
|
# Extract numbers in reverse order. LIST_STAT_MEDIAN uses that.
|
|
for elem in lst:
|
|
if type(elem) in (int, float):
|
|
nums.insert(0, float(elem))
|
|
|
|
if nums == []:
|
|
return 0.0
|
|
|
|
if op == 8: # LIST_STAT_NUM_COUNT
|
|
return float(len(nums))
|
|
|
|
if op in (0, 1, 2) : # LIST_STAT_RANGE, LIST_STAT_MIN, LIST_STAT_MAX
|
|
min = None
|
|
for elem in nums:
|
|
if min is None:
|
|
min = max = elem
|
|
else:
|
|
if elem < min:
|
|
min = elem
|
|
if elem > max:
|
|
max = elem
|
|
return F32(max - min if op == 0 else min if op == 1 else max)
|
|
|
|
if op == 4: # LIST_STAT_MEDIAN requires special treatment
|
|
# The function behaves very strangely with NaNs. This seems to reproduce it:
|
|
|
|
# llListSort seems to do the right thing with NaNs as needed by the median.
|
|
nums = llListSort(nums, 1, 1)
|
|
L = len(nums)
|
|
if L & 1:
|
|
return F32(nums[L>>1])
|
|
return F32((nums[(L>>1)-1] + nums[L>>1])*0.5)
|
|
|
|
if op in (3, 5, 6, 7): # LIST_STAT_MEAN, STD_DEV, SUM, SUM_SQUARES
|
|
sum = 0.
|
|
sumsq = 0.
|
|
mean = 0.
|
|
N = 0.
|
|
M2 = 0.
|
|
for elem in nums:
|
|
N += 1.
|
|
sum += elem
|
|
sumsq += elem*elem
|
|
delta = elem - mean
|
|
mean += delta/N
|
|
M2 += delta*(elem-mean)
|
|
|
|
if op == 5: # LIST_STAT_STD_DEV
|
|
return 0. if N == 1. else F32(math.sqrt(M2/(N-1.)))
|
|
if op == 6: # LIST_STAT_SUM
|
|
return F32(sum)
|
|
if op == 7: # LIST_STAT_SUM_SQUARES
|
|
return F32(sumsq)
|
|
return F32(mean)
|
|
|
|
if op == 9: # LIST_STAT_GEOMETRIC_MEAN
|
|
N = 0.
|
|
GMlog = 0.
|
|
for elem in nums:
|
|
if elem <= 0.:
|
|
return 0.
|
|
N += 1.
|
|
delta = math.log(elem) - GMlog
|
|
GMlog += delta/N
|
|
return F32(math.exp(GMlog))
|
|
|
|
return 0.0
|
|
|
|
def llLog(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isinf(f) and f < 0 or math.isnan(f) or f <= 0.0:
|
|
return 0.0
|
|
return F32(math.log(f))
|
|
|
|
def llLog10(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isinf(f) and f < 0 or math.isnan(f) or f <= 0.0:
|
|
return 0.0
|
|
return F32(math.log10(f))
|
|
|
|
def llMD5String(s, salt):
|
|
assert isstring(s)
|
|
assert isinteger(salt)
|
|
return hashlib.md5(zstr(s).encode('utf8') + b':' + bytes(salt)).hexdigest().decode('utf8')
|
|
|
|
def llModPow(base, exp, mod):
|
|
assert isinteger(base)
|
|
assert isinteger(exp)
|
|
assert isinteger(mod)
|
|
# With some luck, this works fully with native ints on 64 bit machines.
|
|
if mod in (0, 1):
|
|
return 0
|
|
if exp == 0:
|
|
return 1
|
|
# Convert all numbers to unsigned
|
|
if base < 0:
|
|
base += 4294967296
|
|
if exp < 0:
|
|
exp += 4294967296
|
|
if mod < 0:
|
|
mod += 4294967296
|
|
prod = base
|
|
ret = 1
|
|
while True:
|
|
if exp & 1:
|
|
ret = ((ret * prod) & 0xFFFFFFFF) % mod
|
|
exp = exp >> 1
|
|
if exp == 0:
|
|
break
|
|
prod = ((prod * prod) & 0xFFFFFFFF) % mod
|
|
|
|
return S32(ret)
|
|
|
|
def llParseString2List(s, exc, inc, KeepNulls=False):
|
|
assert isstring(s)
|
|
assert islist(exc)
|
|
assert islist(inc)
|
|
if s == u'' and KeepNulls:
|
|
return [s]
|
|
exc = exc[:8]
|
|
inc = inc[:8]
|
|
regex = u''
|
|
for i in exc:
|
|
if i != u'':
|
|
regex += u'|' + re.escape(i)
|
|
for i in inc:
|
|
if i != u'':
|
|
regex += u'|' + re.escape(i)
|
|
if regex == u'':
|
|
split = [s]
|
|
else:
|
|
regex = u'(' + regex[1:] + u')'
|
|
split = re.split(regex, s)
|
|
return [i for i in split if (KeepNulls or i != u'') and i not in exc]
|
|
|
|
def llParseStringKeepNulls(s, exc, inc):
|
|
return llParseString2List(s, exc, inc, KeepNulls=True)
|
|
|
|
def llPow(base, exp):
|
|
assert isfloat(base)
|
|
assert isfloat(exp)
|
|
base = ff(base)
|
|
exp = ff(exp)
|
|
try:
|
|
# Python corner cases and LSL corner cases differ
|
|
|
|
# Python matches these two, but we don't want to get trapped by our own checks.
|
|
if math.isnan(base) or math.isnan(exp):
|
|
return NaN
|
|
if exp == 0.0:
|
|
return 1.0
|
|
|
|
if base == 0.0: # Python gives exception on these, LSL returns stuff
|
|
if math.isinf(exp) and exp < 0:
|
|
return Infinity # llPow(0.0, -inf) = inf
|
|
|
|
if exp < 0.0:
|
|
# Negative finite exponent cases
|
|
if math.copysign(1, base) < 0 and exp.is_integer() and not (exp/2.).is_integer():
|
|
return -Infinity # llPow(-0.0, -odd_integer) = -inf
|
|
return Infinity
|
|
|
|
elif abs(base) == 1.0 and math.isinf(exp):
|
|
return NaN # Python says 1.0
|
|
|
|
f = F32(math.pow(base, exp))
|
|
return 0.0 if f == 0.0 else f # don't return -0.0
|
|
except ValueError: # should happen only with negative base and noninteger exponent
|
|
return NaN
|
|
|
|
def llRot2Angle(r):
|
|
assert isrotation(r)
|
|
# Used by llAngleBetween.
|
|
r = q2f(r)
|
|
# Version based on research by Moon Metty, Miranda Umino and Strife Onizuka
|
|
return F32(2.*math.atan2(math.sqrt(math.fsum((r[0]*r[0], r[1]*r[1], r[2]*r[2]))), abs(r[3])));
|
|
|
|
def llRot2Axis(r):
|
|
assert isrotation(r)
|
|
r = q2f(r)
|
|
return llVecNorm((r[0], r[1], r[2]))
|
|
|
|
def llRot2Euler(r):
|
|
assert isrotation(r)
|
|
r = q2f(r)
|
|
|
|
# Another one of the hardest. The formula for Z angle in the
|
|
# singularity case was inspired by the viewer code.
|
|
y = 2*(r[0]*r[2] + r[1]*r[3])
|
|
|
|
# Check gimbal lock conditions
|
|
if abs(y) > 0.99999:
|
|
return (0., math.asin(y), math.atan2(2.*(r[2]*r[3]+r[0]*r[1]),
|
|
1.-2.*(r[0]*r[0]+r[2]*r[2])))
|
|
|
|
qy2 = r[1]*r[1]
|
|
return (
|
|
math.atan2(2.*(r[0]*r[3]-r[1]*r[2]), 1.-2.*(r[0]*r[0]+qy2)),
|
|
math.asin(y),
|
|
math.atan2(2.*(r[2]*r[3]-r[0]*r[1]), 1.-2.*(r[2]*r[2]+qy2))
|
|
)
|
|
|
|
def llRot2Fwd(r):
|
|
assert isrotation(r)
|
|
r = q2f(r)
|
|
v = (1., 0., 0.)
|
|
if r == (0., 0., 0., 0.):
|
|
return v
|
|
return llVecNorm(mul(v, r, f32=False))
|
|
|
|
def llRot2Left(r):
|
|
assert isrotation(r)
|
|
r = q2f(r)
|
|
v = (0., 1., 0.)
|
|
if r == (0., 0., 0., 0.):
|
|
return v
|
|
return llVecNorm(mul(v, r, f32=False))
|
|
|
|
def llRot2Up(r):
|
|
assert isrotation(r)
|
|
r = q2f(r)
|
|
v = (0., 0., 1.)
|
|
if r == (0., 0., 0., 0.):
|
|
return v
|
|
return llVecNorm(mul(v, r, f32=False))
|
|
|
|
def llRotBetween(v1, v2):
|
|
assert isvector(v1)
|
|
assert isvector(v2)
|
|
v1 = v2f(v1)
|
|
v2 = v2f(v2)
|
|
|
|
aabb = math.sqrt(mul(v1, v1, f32=False) * mul(v2, v2, f32=False)) # product of the squared lengths of the arguments
|
|
if aabb == 0.:
|
|
return ZERO_ROTATION # the arguments are too small, return zero rotation
|
|
ab = mul(v1, v2, f32=False) / aabb # normalized dotproduct of the arguments (cosine)
|
|
c = Vector(((v1[1] * v2[2] - v1[2] * v2[1]) / aabb, # normalized crossproduct of the arguments
|
|
(v1[2] * v2[0] - v1[0] * v2[2]) / aabb,
|
|
(v1[0] * v2[1] - v1[1] * v2[0]) / aabb))
|
|
cc = mul(c, c, f32=False) # squared length of the normalized crossproduct (sine)
|
|
if cc != 0.: # test if the arguments are (anti)parallel
|
|
if ab > -0.7071067811865476: # test if the angle is smaller than 3/4 PI
|
|
s = 1. + ab # use the cosine to adjust the s-element
|
|
else:
|
|
s = cc / (1. + math.sqrt(1. - cc)); # use the sine to adjust the s-element
|
|
m = math.sqrt(cc + s * s) # the magnitude of the quaternion
|
|
return Quaternion(F32((c[0] / m, c[1] / m, c[2] / m, s / m))) # return the normalized quaternion
|
|
if ab > 0.: # test if the angle is smaller than PI/2
|
|
return ZERO_ROTATION # the arguments are parallel
|
|
m = math.sqrt(v1[0] * v1[0] + v1[1] * v1[1]) # the length of one argument projected on the XY-plane
|
|
if m != 0.:
|
|
return Quaternion(F32((v1[1] / m, -v1[0] / m, 0., 0.))) # return rotation with the axis in the XY-plane
|
|
return Quaternion((0., 0., 1., 0.)) # rotate around the Z-axis
|
|
|
|
# Algorithm by Moon Metty (for reference)
|
|
dot = mul(v1, v2, f32=False)
|
|
cross = mod(v1, v2, f32=False)
|
|
csq = mul(cross, cross, f32=False)
|
|
|
|
ddc2 = dot*dot + csq
|
|
|
|
if ddc2 >= 1.5e-45:
|
|
if csq >= 1.5e-45:
|
|
s = math.sqrt(ddc2) + dot;
|
|
m = math.sqrt(csq + s*s);
|
|
return Quaternion(F32((cross[0]/m, cross[1]/m, cross[2]/m, s/m)))
|
|
|
|
# Deal with degenerate cases here
|
|
if dot > 0:
|
|
return ZERO_ROTATION
|
|
m = math.sqrt(v1[0]*v1[0] + v1[1]*v1[1])
|
|
if m >= 1.5e-45:
|
|
return Quaternion(F32((v1[1]/m, -v1[0]/m, 0., 0.)))
|
|
return Quaternion((1., 0., 0., 0.))
|
|
return ZERO_ROTATION
|
|
|
|
def llRound(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isnan(f) or math.isinf(f) or f >= 2147483647.5 or f < -2147483648.0:
|
|
return -2147483648
|
|
return int(math.floor(f+0.5))
|
|
|
|
def llSHA1String(s):
|
|
assert isstring(s)
|
|
return hashlib.sha1(s.encode('utf8')).hexdigest().decode('utf8')
|
|
|
|
def llSin(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isinf(f):
|
|
return NaN
|
|
if -9223372036854775808.0 <= f < 9223372036854775808.0:
|
|
return F32(math.sin(f))
|
|
return f
|
|
|
|
def llSqrt(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if f < 0.0:
|
|
return NaN
|
|
# LSL and Python both produce -0.0 when the input is -0.0.
|
|
return math.sqrt(f)
|
|
|
|
def llStringLength(s):
|
|
assert isstring(s)
|
|
return len(s)
|
|
|
|
def llStringToBase64(s):
|
|
assert isstring(s)
|
|
return b64encode(s.encode('utf8')).decode('utf8')
|
|
|
|
def llStringTrim(s, mode):
|
|
assert isstring(s)
|
|
assert isinteger(mode)
|
|
head = 0
|
|
length = len(s)
|
|
tail = length-1
|
|
if mode & 1: # STRING_TRIM_HEAD
|
|
while head < length and s[head] in u'\x09\x0a\x0b\x0c\x0d\x20':
|
|
head += 1
|
|
if mode & 2: # STRING_TRIM_TAIL
|
|
while tail >= head and s[tail] in u'\x09\x0a\x0b\x0c\x0d\x20':
|
|
tail -= 1
|
|
return s[head:tail+1]
|
|
|
|
def llSubStringIndex(s, pattern):
|
|
assert isstring(s)
|
|
assert isstring(pattern)
|
|
return s.find(pattern)
|
|
|
|
def llTan(f):
|
|
assert isfloat(f)
|
|
f = ff(f)
|
|
if math.isinf(f):
|
|
return NaN
|
|
if -9223372036854775808.0 <= f < 9223372036854775808.0:
|
|
# We only consider the first turn for anomalous results.
|
|
if abs(f) == 1.570796251296997:
|
|
return math.copysign(13245400.0, f);
|
|
if abs(f) == 1.5707963705062866:
|
|
return -math.copysign(22877330.0, f);
|
|
return F32(math.tan(f))
|
|
return f
|
|
|
|
def llToLower(s):
|
|
assert isstring(s)
|
|
if lslcommon.LSO:
|
|
return zstr(re.sub(u'[A-Z]', lambda x: x.group().lower(), s))
|
|
return zstr(s.lower())
|
|
|
|
def llToUpper(s):
|
|
assert isstring(s)
|
|
if lslcommon.LSO:
|
|
return zstr(re.sub(u'[a-z]', lambda x: x.group().upper(), s))
|
|
return zstr(s.upper())
|
|
|
|
def llUnescapeURL(s):
|
|
assert isstring(s)
|
|
ret = b''
|
|
L = len(s)
|
|
i = 0
|
|
while i < L:
|
|
c = s[i]
|
|
i += 1
|
|
if c != u'%':
|
|
ret += c.encode('utf8')
|
|
continue
|
|
if i >= L:
|
|
break
|
|
c = s[i] # First digit
|
|
i += 1
|
|
if i >= L:
|
|
break
|
|
v = 0
|
|
if u'0' <= c <= u'9' or u'A' <= c <= u'F' or u'a' <= c <= u'f':
|
|
v = int(c, 16)<<4
|
|
c = s[i] # Second digit
|
|
if c == u'%':
|
|
ret += chr(v)
|
|
continue
|
|
i += 1
|
|
if u'0' <= c <= u'9' or u'A' <= c <= u'F' or u'a' <= c <= u'f':
|
|
v += int(c, 16)
|
|
ret += chr(v)
|
|
return InternalUTF8toString(ret)
|
|
|
|
def llVecDist(v1, v2):
|
|
assert isvector(v1)
|
|
assert isvector(v2)
|
|
v1 = v2f(v1)
|
|
v2 = v2f(v2)
|
|
return llVecMag((v1[0]-v2[0],v1[1]-v2[1],v1[2]-v2[2]))
|
|
|
|
def llVecMag(v):
|
|
assert isvector(v)
|
|
v = v2f(v)
|
|
return F32(math.sqrt(math.fsum((v[0]*v[0], v[1]*v[1], v[2]*v[2]))))
|
|
|
|
def llVecNorm(v, f32 = True):
|
|
assert isvector(v)
|
|
v = v2f(v)
|
|
if v == ZERO_VECTOR:
|
|
return v
|
|
f = math.sqrt(math.fsum((v[0]*v[0], v[1]*v[1], v[2]*v[2])))
|
|
return F32(Vector((v[0]/f,v[1]/f,v[2]/f)), f32)
|
|
|
|
# NOTE: llXorBase64 returns garbage bytes if the input xor string
|
|
# starts with zero or one valid Base64 characters. We don't emulate that here;
|
|
# our output is deterministic.
|
|
def llXorBase64(s, xor):
|
|
assert isstring(s)
|
|
assert isstring(xor)
|
|
|
|
# Xor the underlying bytes.
|
|
|
|
if xor == u'':
|
|
return s
|
|
|
|
s = b64_re.match(s).group(0)
|
|
L1 = len(s)
|
|
xor = b64_re.match(xor).group(0)
|
|
L2 = len(xor)
|
|
|
|
if L2 == 0:
|
|
# This is not accurate. This returns garbage (of undefined length) in LSL.
|
|
# The first returned byte seems to be zero always though.
|
|
xor = u'ABCD';
|
|
|
|
s = b64decode(s + u'='*(-L1 & 3))
|
|
xor = b64decode(xor + u'='*(-L2 & 3))
|
|
L2 = len(xor)
|
|
|
|
i = 0
|
|
ret = b''
|
|
|
|
Bug3763 = 3763 in Bugs
|
|
# BUG-3763 consists of the binary string having an extra NULL every time after the second repetition of
|
|
# the XOR pattern. For example, if the XOR binary stirng is b'pqr' and the input string is
|
|
# b'12345678901234567890', the XOR binary string behaves as if it was b'pqrpqr\0pqr\0pqr\0pqr\0pq'.
|
|
# We emulate that by adding the zero and increasing the length the first time.
|
|
for c in s:
|
|
ret += chr(ord(c) ^ ord(xor[i]))
|
|
i += 1
|
|
if i >= L2:
|
|
i = 0
|
|
if Bug3763:
|
|
Bug3763 = False
|
|
xor = xor + b'\x00'
|
|
L2 += 1
|
|
return b64encode(ret).decode('utf8')
|
|
|
|
def llXorBase64Strings(s, xor):
|
|
assert isstring(s)
|
|
assert isstring(xor)
|
|
|
|
if xor == u'':
|
|
return s
|
|
|
|
B64 = u'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
|
|
|
|
# Special case when the first character is not a Base64 one. (LL's ways are inextricable)
|
|
base = B64.find(xor[0])
|
|
if base < 0:
|
|
if xor[0] == u'=':
|
|
xor = u'+' + xor[1:]
|
|
base = 62
|
|
else:
|
|
xor = u'/' + xor[1:]
|
|
base = 63
|
|
|
|
ret = u''
|
|
i = 0
|
|
L = len(xor)
|
|
for c1 in s:
|
|
val1 = B64.find(c1)
|
|
val2 = B64.find(xor[i])
|
|
i += 1
|
|
if i >= L:
|
|
i = 0
|
|
|
|
if val1 < 0:
|
|
ret += u'='
|
|
else:
|
|
if val2 < 0:
|
|
val2 = base
|
|
i = 1
|
|
ret += B64[val1 ^ val2]
|
|
return ret
|
|
|
|
# NOTE: llXorBase64StringsCorrect returns garbage bytes if the input xor string
|
|
# starts with zero or one valid Base64 characters. We don't emulate that here;
|
|
# our output is deterministic.
|
|
def llXorBase64StringsCorrect(s, xor):
|
|
assert isstring(s)
|
|
assert isstring(xor)
|
|
|
|
# Xor the underlying bytes but repeating the xor parameter pattern at the first zero (SCR-35).
|
|
|
|
if xor == u'':
|
|
return s
|
|
|
|
|
|
s = b64_re.match(s).group(0)
|
|
L1 = len(s)
|
|
xor = b64_re.match(xor).group(0)
|
|
L2 = len(xor)
|
|
|
|
if L2 == 0:
|
|
# This is not accurate. This returns garbage (of length 4?) in LSL.
|
|
# The first returned byte seems to be zero always though.
|
|
xor = u'ABCD'
|
|
|
|
s = b64decode(s + u'='*(-L1 & 3))
|
|
xor = b64decode(xor + u'='*(-L2 & 3)) + b'\x00'
|
|
|
|
i = 0
|
|
ret = b''
|
|
|
|
for c in s:
|
|
ret += chr(ord(c) ^ ord(xor[i]))
|
|
i += 1
|
|
if xor[i] == b'\x00':
|
|
i = 0
|
|
return b64encode(ret).decode('utf8')
|