LSL-PyOptimizer/lslopt/lslfoldconst.py
Sei Lisa 923309e4a1 Refine test for min and max.
We had dormant code to check for boolean-ness of functions, which is now active. But it didn't cover all possible booleans. Now it does.

An idea for the future is to associate ranges to expressions, and attach them to calculable functions. For example, (integer)llFrand(2) could be resolved to a boolean.
2017-10-21 11:31:53 +02:00

1712 lines
75 KiB
Python

# (C) Copyright 2015-2017 Sei Lisa. All rights reserved.
#
# This file is part of LSL PyOptimizer.
#
# LSL PyOptimizer is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# LSL PyOptimizer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with LSL PyOptimizer. If not, see <http://www.gnu.org/licenses/>.
# Constant folding and simplification of expressions and statements.
import lslcommon
from lslcommon import Vector, Quaternion, warning
import lslfuncs
from lslfuncs import ZERO_VECTOR, ZERO_ROTATION
import math
from lslfuncopt import OptimizeFunc, OptimizeArgs, FuncOptSetup
# Debug
import sys
def print_node(node, indent):
nt = node['nt']
write = sys.stdout.write
spaces = ' ' * (indent*4+2)
write('%s{ nt:%s\n' % (' '*(indent*4), nt))
if 't' in node:
write('%s,t:%s\n' % (spaces, node['t']))
if 'name' in node:
write('%s,name:%s\n' % (spaces, node['name']))
if 'value' in node:
write('%s,value:%s\n' % (spaces, repr(node['value'])))
for prop in node:
if prop not in ('ch', 'nt', 't', 'name', 'value','X','SEF'):
write('%s,%s:%s\n' % (spaces, prop, repr(node[prop])))
if 'ch' in node:
write(spaces + ',ch:[\n')
for subnode in node['ch']:
print_node(subnode, indent+1)
write(spaces + ']\n')
write(' '*(indent*4) + '}\n\n')
class foldconst(object):
def isLocalVar(self, node):
name = node['name']
scope = node['scope']
return self.symtab[scope][name]['Kind'] == 'v' \
and 'Loc' not in self.symtab[scope][name]
def GetListNodeLength(self, node):
"""Get the length of a list that is expressed as a CONST, LIST or CAST
node, or False if it can't be determined.
"""
assert node['t'] == 'list'
nt = node['nt']
if nt == 'CAST':
if node['ch'][0]['t'] == 'list':
return self.GetListNodeLength(node['ch'][0])
return 1
if nt == 'CONST': # constant list
return len(node['value'])
if nt == 'LIST': # list constructor
return len(node['ch'])
return False
def GetListNodeElement(self, node, index):
"""Get an element of a list expressed as a CONST, LIST or CAST node.
If the index is out of range, return False; otherwise the result can be
either a node or a constant.
"""
assert node['t'] == 'list'
nt = node['nt']
if nt == 'CAST':
# (list)list_expr should have been handled in CAST
assert node['ch'][0]['t'] != 'list'
if index == 0 or index == -1:
return node['ch'][0]
return False
if nt == 'CONST':
try:
return node['value'][index]
except IndexError:
pass
return False
if nt == 'LIST':
try:
return node['ch'][index]
except IndexError:
return False
return False
def ConstFromNodeOrConst(self, nodeOrConst):
"""Return the constant if the value is a node and represents a constant,
or if the value is directly a constant, and False otherwise.
"""
if type(nodeOrConst) == dict:
if nodeOrConst['nt'] == 'CONST':
return nodeOrConst['value']
return False
return nodeOrConst
def TypeFromNodeOrConst(self, nodeOrConst):
"""Return the LSL type of a node or constant."""
if nodeOrConst is False:
return False
if type(nodeOrConst) == dict:
return nodeOrConst['t']
return lslcommon.PythonType2LSL[type(nodeOrConst)]
def FoldAndRemoveEmptyStmts(self, lst):
"""Utility function for elimination of useless expressions in FOR"""
idx = 0
while idx < len(lst):
self.FoldTree(lst, idx)
self.FoldStmt(lst, idx)
# If eliminated, it must be totally removed. A ';' won't do.
if lst[idx]['nt'] == ';':
del lst[idx]
else:
idx += 1
def DoesSomething(self, node):
"""Tell if a subtree does something or is just empty statements
(a pure combination of ';' and '{}')
Not to be confused with lslparse.does_something which includes labels,
and applies to a block's statement list, not to a node.
"""
if node['nt'] != ';':
if node['nt'] == '{}':
for subnode in node['ch']:
if self.DoesSomething(subnode):
return True
else:
return True
return False
def CompareTrees(self, node1, node2):
"""Try to compare two subtrees to see if they are equivalent."""
# They MUST be SEF and stable.
if 'SEF' not in node1 or 'SEF' not in node2:
return False
# So far it's only accepted if both are identifiers or function calls,
# recursively.
return (node1['nt'] == node2['nt'] == 'IDENT'
and node1['name'] == node2['name']
and node1['scope'] == node2['scope']
or node1['nt'] == node2['nt'] == 'FNCALL'
and node1['name'] == node2['name']
and 'uns' not in self.symtab[0][node1['name']]
and all(self.CompareTrees(node1['ch'][i],
node2['ch'][i])
for i in xrange(len(node1['ch'])))
or node1['nt'] == node2['nt'] == 'CAST'
and node1['t'] == node2['t']
and self.CompareTrees(node1['ch'][0], node2['ch'][0])
)
def FoldStmt(self, parent, index):
"""Simplify a statement."""
node = parent[index]
if node['nt'] == 'EXPR':
node = node['ch'][0]
# If the statement is side-effect-free, remove it as it does nothing.
if 'SEF' in node:
# Side-effect free means that a statement does nothing except
# wasting CPU, and can thus be removed without affecting the
# program. But side effect freedom is propagated from the
# constituents of the statement, e.g. function calls in expressions
# or substatements in FOR, or even individual variables.
#
# Many library functions like llSameGroup or llGetVel() are
# side-effect free. Many other functions like llSleep() or
# llSetScale() are not. User functions may or may not be.
#
# Assignments do have side effects, except those of the form x = x.
# Pre- and post-increment and decrement also have side effects.
# Type casts do not add side effects. Neither do binary operators.
parent[index] = {'nt':';', 't':None, 'SEF': True}
return
# Post-increments take more space than pre-increments.
if node['nt'] in ('V++', 'V--'):
node['nt'] = '++V' if node['nt'] == 'V++' else '--V';
# Function calls are SEF if both the function and the args are SEF.
# If the statement is a function call and the function is marked as SEF
# at this point, it means the arguments are not SEF. Replace the node
# in that case with a block.
if node['nt'] == 'FNCALL' and 'SEF' in self.symtab[0][node['name']] and 'Loc' in self.symtab[0][node['name']]:
parent[index] = {'nt':'{}', 't':None, 'ch':
[{'nt':'EXPR','t':x['t'],'ch':[x]} for x in node['ch']]}
self.FoldTree(parent, index)
return
def ExpandCondition(self, parent, index):
"""IF, FOR, WHILE and DO...WHILE conditions accept several types, not
just integer. However, leaving them as-is generates longer code than if
we expand them and let the optimizer optimize, for float, vector and
rotation, and no matter the optimization in the case of list.
"""
ctyp = parent[index]['t']
# Under LSO, this would break the fact that 1-element lists count as
# false, so we don't do it for LSO lists.
if ctyp in ('float', 'vector', 'rotation') or ctyp == 'list' and not lslcommon.LSO:
parent[index] = {'nt':'!=', 't':'integer', 'ch':[parent[index],
{'nt':'CONST', 't':ctyp, 'value':
0.0 if ctyp == 'float'
else ZERO_VECTOR if ctyp == 'vector'
else ZERO_ROTATION if ctyp == 'rotation'
else []}]}
parent[index]['SEF'] = 'SEF' in parent[index]['ch'][0]
def IsBool(self, node):
"""Some operators return 0 or 1, and that allows simplification of
boolean expressions. This function returns whether we know for sure
that the result is boolean.
"""
nt = node['nt']
if nt in ('<', '!', '>', '<=', '>=', '==', '||', '&&') \
or nt == '!=' and node['ch'][0]['t'] != 'list' \
or nt == '&' and (self.IsBool(node['ch'][0]) or self.IsBool(node['ch'][1])) \
or nt in ('|', '^', '*') and self.IsBool(node['ch'][0]) and self.IsBool(node['ch'][1]) \
or nt == 'CONST' and node['t'] == 'integer' and node['value'] in (0, 1):
return True
if nt == 'FNCALL':
sym = self.symtab[0][node['name']]
if sym['Type'] == 'integer' and 'min' in sym and 'max' in sym \
and sym['min'] >= 0 and sym['max'] <= 1:
return True
return False
def FoldCond(self, parent, index, ParentIsNegation = False):
"""When we know that the parent is interested only in the truth value
of the node, we can perform further optimizations. This function deals
with them.
"""
node = parent[index]
nt = node['nt']
if nt in ('CONST', 'IDENT', 'FLD'):
if node['nt'] == 'CONST':
node['t'] = 'integer'
node['value'] = 1 if lslfuncs.cond(node['value']) else 0
return # Nothing to do if it's already simplified.
child = node['ch'] if 'ch' in node else None
if nt == '!':
self.FoldCond(child, 0, True)
if child[0]['nt'] == '!':
# bool(!!a) equals bool(a)
parent[index] = child[0]['ch'][0]
return
if nt == 'NEG':
# bool(-a) equals bool(a)
parent[index] = child[0]
self.FoldCond(parent, index, ParentIsNegation)
return
if nt in self.binary_ops and child[0]['t'] == child[1]['t'] == 'integer':
if nt == '!=':
if child[0]['nt'] == 'CONST' and child[0]['value'] == 1 \
or child[1]['nt'] == 'CONST' and child[1]['value'] == 1:
# a != 1 -> a - 1 (which FoldTree will transform to ~-a)
node['nt'] = '-'
else:
# This converts != to ^; FoldTree will simplify ^-1 to ~
# and optimize out ^0.
node['nt'] = '^'
self.FoldTree(parent, index)
return
if nt == '==':
if child[0]['nt'] == 'CONST' and -1 <= child[0]['value'] <= 1 \
or child[1]['nt'] == 'CONST' and -1 <= child[1]['value'] <= 1:
# Transform a==b into !(a-b) if either a or b are in [-1, 1]
parent[index] = {'nt':'!', 't':'integer', 'ch':[node]}
node['nt'] = '-'
self.FoldTree(parent, index)
return
if nt == '|':
# In a boolean context, the operands count as booleans.
self.FoldCond(child, 0)
self.FoldCond(child, 1)
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b] if present
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if (child[b]['nt'] == 'CONST' and child[b]['value']
and 'SEF' in child[a]
):
node = parent[index] = child[b]
node['value'] = -1
return
del a, b
# Specific optimization to catch a bitwise test appearing frequently.
# If b and c are nonzero constant powers of two:
# !(a & b) | !(a & c) -> ~(a|~(b|c))
# e.g. if (a & 4 && a & 8) -> if (!~(a|-13))
if (child[0]['nt'] == '!' and child[0]['ch'][0]['nt'] == '&'
and child[1]['nt'] == '!' and child[1]['ch'][0]['nt'] == '&'
):
and1 = child[0]['ch'][0]['ch']
and2 = child[1]['ch'][0]['ch']
a, b, c, d = 0, 1, 0, 1
if and1[b]['nt'] != 'CONST':
a, b = b, a
if and2[d]['nt'] != 'CONST':
c, d = d, c
if and1[b]['nt'] == and2[d]['nt'] == 'CONST':
val1 = and1[b]['value']
val2 = and2[d]['value']
if (val1 and val2
# power of 2
and (val1 & (val1 - 1) & 0xFFFFFFFF) == 0
and (val2 & (val2 - 1) & 0xFFFFFFFF) == 0
and self.CompareTrees(and1[a], and2[c])
):
# Check passed
child[0] = and1[a]
child[1] = and1[b]
child[1]['value'] = ~(val1 | val2)
parent[index] = {'nt':'~', 't':'integer',
'ch':[node]}
if 'SEF' in node:
parent[index]['SEF'] = True
self.FoldCond(parent, index, ParentIsNegation)
return
del val1, val2
del a, b, c, d, and1, and2
# Absorb further flags, to allow chaining of &&
# If ~r and s are constants, and s is a power of two:
# (!~(x|~r) && x&s) -> !~(x|(~r&~s))
# This is implemented as:
# ~(x|~r) | !(x&s) -> ~(x|~(r|s))
# because that's the intermediate result after conversion of &&.
# a and b are going to be the children of the main |
# a is going to be child that has the ~
# b is the other child (with the !)
# c is the child of ~ which has x
# d is the child of ~ with the constant ~r
# e is the child of ! which has x
# f is the child of ! with the constant s
a, b = 0, 1
if child[a]['nt'] != '~':
a, b = b, a
c, d = 0, 1
if child[a]['nt'] == '~' and child[a]['ch'][0]['nt'] == '|':
if child[a]['ch'][0]['ch'][d]['nt'] != 'CONST':
c, d = d, c
e, f = 0, 1
if child[b]['nt'] == '!' and child[b]['ch'][0]['nt'] == '&':
if child[b]['ch'][0]['ch'][f]['nt'] != 'CONST':
e, f = f, e
# All pointers are ready to check applicability.
if (child[a]['nt'] == '~' and child[a]['ch'][0]['nt'] == '|'
and child[b]['nt'] == '!' and child[b]['ch'][0]['nt'] == '&'
):
ch1 = child[a]['ch'][0]['ch']
ch2 = child[b]['ch'][0]['ch']
if (ch1[d]['nt'] == 'CONST' and ch2[f]['nt'] == 'CONST'
and (ch2[f]['value'] & (ch2[f]['value'] - 1)
& 0xFFFFFFFF) == 0
):
if self.CompareTrees(ch1[c], ch2[e]):
# We're in that case. Apply optimization.
parent[index] = child[a]
ch1[d]['value'] &= ~ch2[f]['value']
return
del ch1, ch2
del a, b, c, d, e, f
# Check if the operands are a negation ('!') or can be inverted
# without adding more than 1 byte and are boolean.
# We only support '<' and some cases of '&' (are there more?)
Invertible = [False, False]
for a in (0, 1):
Invertible[a] = child[a]['nt'] == '!'
if child[a]['nt'] == '<' \
and child[a]['ch'][0]['t'] == child[a]['ch'][1]['t'] == 'integer':
if child[a]['ch'][0]['nt'] == 'CONST' \
and child[a]['ch'][0]['value'] != 2147483647 \
or child[a]['ch'][1]['nt'] == 'CONST' \
and child[a]['ch'][1]['value'] != int(-2147483648):
Invertible[a] = True
# Deal with our optimization of a<0 -> a&0x80000000 (see below)
if child[a]['nt'] == '&' and (
child[a]['ch'][0]['nt'] == 'CONST' and child[a]['ch'][0]['value'] == int(-2147483648)
or child[a]['ch'][1]['nt'] == 'CONST' and child[a]['ch'][1]['value'] == int(-2147483648)
):
Invertible[a] |= ParentIsNegation
if (Invertible[0] or Invertible[1]) and ParentIsNegation:
# !(!a|b) -> a&-!b or a&!b
# This deals with the part after the first !, transforming
# it into (!a|!!b) so that the outer node can optimize the
# negated version to a simple &.
for a in (0, 1):
if not Invertible[a]:
child[a] = {'nt':'!', 't':'integer',
'ch':[{'nt':'!', 't':'integer', 'ch':[child[a]]}]
}
Invertible[a] = True
if Invertible[0] and Invertible[1]:
# Both operands are negated, or negable.
# Make them a negation if they aren't already.
for a in (0, 1):
if child[a]['nt'] == '<':
if child[a]['ch'][0]['nt'] == 'CONST':
child[a]['ch'][0]['value'] += 1
else:
child[a]['ch'][1]['value'] -= 1
child[a]['ch'][0], child[a]['ch'][1] = \
child[a]['ch'][1], child[a]['ch'][0]
child[a] = {'nt':'!','t':'integer','ch':[child[a]]}
elif child[a]['nt'] == '&':
child[a] = {'nt':'!', 't':'integer',
'ch':[{'nt':'!', 't':'integer', 'ch':[child[a]]}]
}
self.FoldTree(child[a]['ch'], 0)
# If they are boolean, the expression can be turned into
# !(a&b) which hopefully will have a ! uptree if it came
# from a '&&' and cancel out (if not, we still remove one
# ! so it's good). If one is bool, another transformation
# can be performed: !nonbool|!bool -> !(nonbool&-bool)
# which is still a gain.
# Deal with operands in any order
a, b = 0, 1
# Put the bool in child[b]['ch'][0].
if not self.IsBool(child[b]['ch'][0]):
a, b = 1, 0
if self.IsBool(child[b]['ch'][0]):
if not self.IsBool(child[a]['ch'][0]):
child[b]['ch'][0] = {'nt':'NEG','t':'integer',
'ch':[child[b]['ch'][0]]}
node = parent[index] = {'nt':'!', 't':'integer',
'ch':[{'nt':'&','t':'integer',
'ch':[child[0]['ch'][0],
child[1]['ch'][0]]
}]
}
# Fold the node we've just synthesized
# (this deals with SEF)
self.FoldTree(parent, index)
return
# This optimization turns out to be counter-productive for some
# common cases, e.g. it turns i >= 0 into !(i & 0x80000000)
# instead of the more optimal (integer)-1 < i. So we revert it
# where appropriate (in FoldTree, case '!', and above, case '|').
if nt == '<':
if child[1]['nt'] == 'CONST' and child[1]['value'] == 0:
nt = node['nt'] = '&'
child[1]['value'] = int(-2147483648)
# Fall through to check & 0x80000000
if nt == '&':
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b], if present
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST' and child[b]['value'] == int(-2147483648) \
and child[a]['nt'] == 'FNCALL':
sym = self.symtab[0][child[a]['name']]
if 'min' in sym and sym['min'] == -1:
node = parent[index] = {'nt':'~', 't':'integer',
'ch':[child[a]]}
self.FoldTree(parent, index)
return
def CopyNode(self, node):
'''This is mainly for simple_expr so no need to go deeper than 1 level
'''
ret = node.copy()
if 'ch' in ret:
new = []
for subnode in ret['ch']:
new.append(self.CopyNode(subnode))
ret['ch'] = new
return ret
def FoldTree(self, parent, index):
"""Recursively traverse the tree to fold constants, changing it in
place.
Also optimizes away IF, WHILE, etc.
"""
node = parent[index]
nt = node['nt']
child = node['ch'] if 'ch' in node else None
if nt == 'CONST':
# Job already done. But mark as side-effect free.
node['SEF'] = True
return
if nt == 'CAST':
self.FoldTree(child, 0)
if 'SEF' in child[0]:
node['SEF'] = True
if child[0]['nt'] == 'CONST':
# Enable key constants. We'll typecast them back on output, but
# this enables some optimizations.
#if node['t'] != 'key': # key constants not possible
parent[index] = {'nt':'CONST', 't':node['t'], 'SEF':True,
'value':lslfuncs.typecast(
child[0]['value'], lslcommon.LSLType2Python[node['t']])}
# Remove casts of a type to the same type (NOP in Mono)
# This is not an optimization by itself, but it simplifies the job,
# by not needing to look into nested casts like (key)((key)...)
while node['nt'] == 'CAST' and child[0]['t'] == node['t']:
parent[index] = node = child[0]
if 'ch' not in node:
break
child = node['ch']
return
if nt == 'NEG':
self.FoldTree(child, 0)
if child[0]['nt'] == '+' and (child[0]['ch'][0]['nt'] == 'NEG'
or child[0]['ch'][1]['nt'] == 'NEG'):
node = parent[index] = child[0]
child = node['ch']
for a in (0, 1):
if child[a]['nt'] == 'NEG':
child[a] = child[a]['ch'][0]
else:
child[a] = {'nt':'NEG','t':child[a]['t'],'ch':[child[a]]}
self.FoldTree(child, a)
return
if child[0]['nt'] == 'NEG':
# Double negation: - - expr -> expr
node = parent[index] = child[0]['ch'][0]
child = node['ch'] if 'ch' in node else None
elif child[0]['nt'] == 'CONST':
node = parent[index] = child[0]
node['value'] = lslfuncs.neg(node['value'])
child = None
elif 'SEF' in child[0]:
# propagate Side Effect Free flag
node['SEF'] = True
if child and node['nt'] == 'NEG' and child[0]['nt'] == '~':
track = child[0]['ch'][0]
const = 1
while track['nt'] == 'NEG' and track['ch'][0]['nt'] == '~':
const += 1
track = track['ch'][0]['ch'][0]
if const > 2:
# -~-~-~expr -> expr+3
node = {'nt':'CONST', 't':'integer', 'SEF':True, 'value':const}
node = {'nt':'+', 't':'integer', 'ch':[node, track]}
if 'SEF' in track:
node['SEF'] = True
parent[index] = node
return
if nt == '!':
self.FoldTree(child, 0)
self.FoldCond(child, 0, True)
# !! does *not* cancel out (unless in cond)
subexpr = child[0]
snt = subexpr['nt']
if snt == 'FNCALL' and subexpr['name'] == 'llStringLength':
# !llStringLength(expr) -> expr == ""
parent[index] = {'nt':'==', 't':'integer',
'ch':[subexpr['ch'][0],
{'nt':'CONST', 't':'string',
'value':u""}]}
# new node is SEF if the argument to llStringLength is
if 'SEF' in subexpr['ch'][0]:
parent[index]['SEF'] = True
return
if 'SEF' in subexpr:
node['SEF'] = True
if subexpr['nt'] == 'CONST':
node = parent[index] = subexpr
node['value'] = int(not node['value'])
return
if snt == '<':
lop = subexpr['ch'][0]
rop = subexpr['ch'][1]
if lop['nt'] == 'CONST' and lop['t'] == rop['t'] == 'integer' \
and lop['value'] < 2147483647:
lop['value'] += 1
subexpr['ch'][0], subexpr['ch'][1] = subexpr['ch'][1], subexpr['ch'][0]
parent[index] = subexpr # remove !
return
if rop['nt'] == 'CONST' and lop['t'] == rop['t'] == 'integer' \
and rop['value'] > int(-2147483648):
rop['value'] -= 1
subexpr['ch'][0], subexpr['ch'][1] = subexpr['ch'][1], subexpr['ch'][0]
parent[index] = subexpr # remove !
return
if snt == '&':
a, b = 0, 1
if subexpr['ch'][b]['nt'] != 'CONST':
a, b = 1, 0
if subexpr['ch'][b]['nt'] == 'CONST' and subexpr['ch'][b]['value'] == int(-2147483648):
# !(i & 0x80000000) -> -1 < i (because one of our
# optimizations can be counter-productive, see FoldCond)
subexpr['nt'] = '<'
subexpr['ch'][b]['value'] = -1
subexpr['ch'] = [subexpr['ch'][b], subexpr['ch'][a]]
parent[index] = subexpr
return
return
if nt == '~':
self.FoldTree(child, 0)
subexpr = child[0]
if 'SEF' in subexpr:
node['SEF'] = True
if subexpr['nt'] == '~':
# Double negation: ~~expr
parent[index] = subexpr['ch'][0]
elif subexpr['nt'] == 'CONST':
node = parent[index] = child[0]
node['value'] = ~node['value']
return
if nt in self.binary_ops:
# RTL evaluation
self.FoldTree(child, 1)
self.FoldTree(child, 0)
if 'SEF' in child[0] and 'SEF' in child[1]:
# Propagate SEF flag if both sides are side-effect free.
node['SEF'] = True
optype = node['t']
lval = child[0]
ltype = lval['t']
lnt = lval['nt']
rval = child[1]
rtype = rval['t']
rnt = rval['nt']
if lnt == rnt == 'CONST':
op1 = lval['value']
op2 = rval['value']
if nt == '+':
if ltype == rtype == 'string' and not self.addstrings:
return
result = lslfuncs.add(op1, op2)
elif nt == '-':
result = lslfuncs.sub(op1, op2)
elif nt == '*':
result = lslfuncs.mul(op1, op2)
elif nt == '/':
try:
result = lslfuncs.div(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '%':
try:
result = lslfuncs.mod(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '<<':
result = lslfuncs.S32(op1 << (op2 & 31))
elif nt == '>>':
result = lslfuncs.S32(op1 >> (op2 & 31))
elif nt == '==' or nt == '!=':
result = lslfuncs.compare(op1, op2, Eq = (nt == '=='))
elif nt in ('<', '<=', '>', '>='):
if nt in ('>', '<='):
result = lslfuncs.less(op2, op1)
else:
result = lslfuncs.less(op1, op2)
if nt in ('>=', '<='):
result = 1 - result
elif nt == '|':
result = op1 | op2
elif nt == '^':
result = op1 ^ op2
elif nt == '&':
result = op1 & op2
elif nt == '||':
result = int(bool(op1) or bool(op2))
elif nt == '&&':
result = int(bool(op1) and bool(op2))
else:
assert False, 'Internal error: Operator not found: ' + nt # pragma: no cover
parent[index] = {'nt':'CONST', 't':node['t'], 'SEF':True, 'value':result}
return
# Simplifications for particular operands
if nt == '-':
if optype in ('vector', 'rotation'):
if lnt == 'CONST' and all(component == 0 for component in lval['value']):
# Change <0,0,0[,0]>-expr -> -expr
parent[index] = {'nt':'NEG', 't':node['t'], 'ch':[rval]}
if 'SEF' in rval:
parent[index]['SEF'] = True
elif rnt == 'CONST' and all(component == 0 for component in rval['value']):
# Change expr-<0,0,0[,0]> -> expr
parent[index] = lval
return
# Change - to + - for int/float
nt = node['nt'] = '+'
if child[1]['nt'] == 'CONST':
rval['value'] = lslfuncs.neg(rval['value'])
else:
rnt = 'NEG'
RSEF = 'SEF' in rval
rval = child[1] = {'nt':rnt, 't':rval['t'], 'ch':[rval]}
self.FoldTree(child, 1)
if RSEF:
rval['SEF'] = True
# rtype unchanged
# Fall through to simplify it as '+'
if nt == '+':
# Tough one. Remove neutral elements for the diverse types,
# and more.
# Addition of integers, strings, and lists is associative.
# Addition of floats, vectors and rotations would be, except
# for FP precision.
# TODO: associative addition of lists
# Associative lists are trickier, because unlike the others,
# the types of the operands may not be lists
# so e.g. list+(integer+integer) != (list+integer)+integer.
if optype == 'integer' or optype == 'string' and self.addstrings:
if lnt == '+' and rnt == 'CONST' and lval['ch'][1]['nt'] == 'CONST':
# (var + ct1) + ct2 -> var + (ct1 + ct2)
child[1] = {'nt': '+', 't': optype, 'ch':[lval['ch'][1], rval], 'SEF':True}
lval = child[0] = lval['ch'][0]
lnt = lval['nt']
ltype = lval['t']
rtype = optype
# Fold the RHS again now that we have it constant
self.FoldTree(child, 1)
rval = child[1]
rnt = rval['nt']
if optype == 'list' and not (ltype == rtype == 'list'):
if lnt == 'CONST' and not lval['value']:
# [] + nonlist -> (list)nonlist
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index]['SEF'] = 'SEF' in rval
return
if optype in ('vector', 'rotation'):
# not much to do with vectors or quaternions either
if lnt == 'CONST' and all(x == 0 for x in lval['value']):
# Change <0,0,0[,0]>+expr -> expr
parent[index] = rval
elif rnt == 'CONST' and all(x == 0 for x in rval['value']):
# Change expr+<0,0,0[,0]> -> expr
parent[index] = lval
return
# Can't be key, as no combo of addition operands returns key
# All these types evaluate to boolean False when they are
# the neutral addition element.
if optype in ('string', 'float', 'list'):
if lnt == 'CONST' and not lval['value']:
# 0. + expr -> expr
# "" + expr -> expr
# [] + expr -> expr
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index]['SEF'] = 'SEF' in rval
return
if rnt == 'CONST' and not rval['value']:
# expr + 0. -> expr
# expr + "" -> expr
# expr + [] -> expr
parent[index] = self.Cast(lval, optype)
# node is SEF if lval is
parent[index]['SEF'] = 'SEF' in lval
return
if ltype == rtype == 'list':
if (rnt == 'LIST' and len(rval['ch']) == 1
or rnt == 'CAST'):
# list + (list)element -> list + element
# list + [element] -> list + element
while True:
# Remove nested typecasts: (list)(list)x -> x
rval = parent[index]['ch'][1] = rval['ch'][0]
if rval['nt'] != 'CAST' or rval['t'] != 'list':
break
return
if rnt == 'CONST' and len(rval['value']) == 1:
# list + [constant] -> list + constant
rval['value'] = rval['value'][0]
rtype = rval['t'] = lslcommon.PythonType2LSL[type(rval['value'])]
return
if (lnt == 'LIST' and len(lval['ch']) == 1
or lnt == 'CAST'):
# (list)element + list -> element + list
# [element] + list -> element + list
while True:
# Remove nested typecasts: (list)(list)x -> x
lval = parent[index]['ch'][0] = lval['ch'][0]
if lval['nt'] != 'CAST' or lval['t'] != 'list':
break
return
if lnt == 'CONST' and len(lval['value']) == 1:
# [constant] + list -> constant + list
lval['value'] = lval['value'][0]
ltype = lval['t'] = lslcommon.PythonType2LSL[type(lval['value'])]
return
return
# Must be two integers. This allows for a number of
# optimizations. First the most obvious ones.
if lnt == 'CONST' and lval['value'] == 0:
parent[index] = rval
return
if rnt == 'CONST' and rval['value'] == 0:
parent[index] = lval
return
if lnt != 'CONST' != rnt:
# Neither is const. Two chances to optimize.
# 1. -expr + -expr -> -(expr + expr) (saves 1 byte)
# 2. lvalue + -lvalue -> 0
# There may be other possibilities for optimization,
# e.g. (type)ident + -(type)ident but we only do lvalues
# here. Note these are integers, no NaN involved.
# TODO: Compare the subtrees if they are SEF. If they are
# the same subtree, they can cancel out.
if lnt == rnt == 'NEG':
node = {'nt':'+', 't':optype, 'ch':[lval['ch'][0], rval['ch'][0]]}
SEF = 'SEF' in lval['ch'][0] and 'SEF' in rval['ch'][0]
if SEF:
node['SEF'] = True
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if SEF:
node['SEF'] = True
parent[index] = node
return
if lnt == 'NEG':
# Swap to treat always as expr + -expr for simplicity.
lnt, lval, rnt, rval = rnt, rval, lnt, lval
if lnt == 'IDENT' and rnt == 'NEG' and rval['ch'][0]['nt'] == 'IDENT' \
and lval['name'] == rval['ch'][0]['name']:
# Replace with 0
parent[index] = {'nt':'CONST', 'SEF': True, 't':optype, 'value':0}
return
if lnt == '+' and (lval['ch'][0]['nt'] == 'CONST'
or lval['ch'][1]['nt'] == 'CONST'):
# We have expr + const + const or const + expr + const.
# Addition of integers mod 2^32 is associative and
# commutative, so constants can be merged.
if lval['ch'][0]['nt'] == 'CONST':
rval['value'] = lslfuncs.S32(rval['value'] + lval['ch'][0]['value'])
lval = child[0] = lval['ch'][1]
else:
rval['value'] = lslfuncs.S32(rval['value'] + lval['ch'][1]['value'])
lval = child[0] = lval['ch'][0]
lnt = lval['nt']
if rnt == '+' and (rval['ch'][0]['nt'] == 'CONST'
or rval['ch'][1]['nt'] == 'CONST'):
# const + (expr + const) or const + (const + expr)
# same as above, join them
# FIXME: Isn't this covered by the associative sum above?
pass # TODO: implement const + (expr + const) or const + (const + expr)
if rnt == 'CONST':
# Swap the vars to deal with const in lval always
lval, lnt, rval, rnt = rval, rnt, lval, lnt
RSEF = 'SEF' in rval
if lval['value'] == -1 or lval['value'] == -2:
if rnt == 'NEG': # Cancel the NEG
node = {'nt':'~', 't':optype, 'ch':rval['ch']}
if RSEF:
node['SEF'] = True
else: # Add the NEG
node = {'nt':'NEG', 't':optype, 'ch':[rval]}
if RSEF:
node['SEF'] = True
node = {'nt':'~', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
if lval['value'] == -2:
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
node = {'nt':'~', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
parent[index] = node
return
if lval['value'] == 1 or lval['value'] == 2:
if rnt == '~': # Cancel the ~
node = {'nt':'NEG', 't':optype, 'ch':rval['ch']}
if RSEF:
node['SEF'] = True
else:
node = {'nt':'~', 't':optype, 'ch':[rval]}
if RSEF:
node['SEF'] = True
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
if lval ['value'] == 2:
node = {'nt':'~', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
parent[index] = node
return
# More than 2 becomes counter-productive.
return
if nt == '<<' and child[1]['nt'] == 'CONST':
# Transforming << into multiply saves some bytes.
if child[1]['value'] & 31:
# x << 3 --> x * 8
# we have {<<, something, {CONST n}}
# we transform it into {*, something, {CONST n}}
nt = node['nt'] = '*'
child[1]['value'] = 1 << (child[1]['value'] & 31)
# Fall through to optimize product
else: # x << 0 --> x
parent[index] = child[0]
return
if nt == '%' \
and child[1]['nt'] == 'CONST' \
and child[1]['t'] == 'integer' \
and abs(child[1]['value']) == 1:
# a%1 -> a&0
# a%-1 -> a&0
# (SEF analysis performed below)
nt = node['nt'] = '&'
child[1]['value'] = 0
if nt in ('*', '/'):
# Extract signs outside
if child[0]['nt'] == 'NEG' or child[1]['nt'] == 'NEG':
a, b = 0, 1
if child[b]['nt'] == 'NEG':
a, b = 1, 0
child[a] = child[a]['ch'][0]
parent[index] = node = {'nt':'NEG', 't':node['t'], 'ch':[node]}
if 'SEF' in node['ch'][0]:
node['SEF'] = True
# Fold the new expression
self.FoldTree(parent, index)
return
# Deal with operands in any order
a, b = 0, 1
if child[a]['nt'] == 'CONST' and child[a]['t'] in ('float', 'integer'):
a, b = 1, 0
if child[b]['nt'] == 'CONST':
val = child[b]['value']
# Optimize out signs if possible.
# Note that (-intvar)*floatconst needs cornermath because
# -intvar could equal intvar if intvar = -2147483648,
# so the sign is a no-op and pushing it to floatconst would
# make the result be different.
if child[a]['nt'] == 'NEG' \
and (self.cornermath
or child[a]['t'] != 'integer'
or child[b]['t'] != 'float'
):
# Expression is of the form (-float)*const or (-float)/const or const/(-float)
if val != int(-2147483648) or child[a]['t'] == 'integer': # can't be optimized otherwise
child[a] = child[a]['ch'][0] # remove NEG
child[b]['value'] = val = -val
# Five optimizations corresponding to -2, -1, 0, 1, 2
# for product, and two for division:
# expr * 1 -> expr
# expr * 0 -> 0 if side-effect free
# expr * -1 -> -expr
# ident * 2 -> ident + ident (only if ident is local)
# ident * -2 -> -(ident + ident) (only if ident is local)
# expr/1 -> expr
# expr/-1 -> -expr
if nt == '*' and child[b]['t'] in ('float', 'integer') \
and val in (-2, -1, 0, 1, 2) \
or nt == '/' and b == 1 and val in (-1, 1):
if val == 1:
parent[index] = child[a]
return
if val == 0:
if 'SEF' in child[a]:
parent[index] = child[b]
return
if val == -1:
# Note 0.0*-1 equals -0.0 in LSL, so this is safe
node = parent[index] = {'nt':'NEG', 't':node['t'], 'ch':[child[a]]}
if 'SEF' in child[a]:
node['SEF'] = True
return
# only -2, 2 remain
if child[a]['nt'] == 'IDENT' and self.isLocalVar(child[a]):
child[b] = child[a].copy()
node['nt'] = '+'
if val == -2:
parent[index] = {'nt':'NEG', 't':node['t'], 'ch':[node]}
if 'SEF' in node:
parent[index]['SEF'] = True
return
return
if nt == '==':
if child[0]['t'] == child[1]['t'] == 'integer':
# Deal with operands in any order
a, b = 0, 1
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST':
if child[b]['value'] in (-1, 0, 1):
node = child[a]
SEF = 'SEF' in node
if child[b]['value'] == -1:
node = {'nt':'~', 't':'integer', 'ch':[node]}
if SEF: node['SEF'] = True
elif child[b]['value'] == 1:
node = {'nt':'NEG', 't':'integer', 'ch':[node]}
if SEF: node['SEF'] = True
node = {'nt':'~', 't':'integer', 'ch':[node]}
if SEF: node['SEF'] = True
node = parent[index] = {'nt':'!', 't':'integer',
'ch':[node]}
if SEF: node['SEF'] = True
del child
self.FoldTree(parent, index)
return
if self.CompareTrees(child[0], child[1]):
# a == a -> 1
parent[index] = {'nt':'CONST', 't':'integer', 'value':1,
'SEF':True}
return
return
if nt in ('<=', '>=') or nt == '!=' and child[0]['t'] != 'list':
# Except for list != list, all these comparisons are compiled
# as !(a>b) etc. so we transform them here in order to reduce
# the number of cases to check.
# a<=b --> !(a>b); a>=b --> !(a<b); a!=b --> !(a==b)
node['nt'] = {'<=':'>', '>=':'<', '!=':'=='}[nt]
parent[index] = {'nt':'!', 't':node['t'], 'ch':[node]}
self.FoldTree(parent, index)
return
if nt == '>':
# Invert the inequalities to avoid doubling the cases to check.
# a>b -> b<a
# FIXME: This is only possible if at most one is non-SEF.
nt = node['nt'] = '<'
child[1], child[0] = child[0], child[1]
# fall through to check for '<'
if nt == '<':
# Convert 2147483647<i and i<-2147483648 to i&0
if child[0]['t'] == child[1]['t'] == 'integer' \
and (child[0]['nt'] == 'CONST' and child[0]['value'] == 2147483647
or child[1]['nt'] == 'CONST' and child[1]['value'] == int(-2147483648)):
a, b = 0, 1
# Put the constant in child[b]
if child[a]['nt'] == 'CONST':
a, b = 1, 0
nt = node['nt'] = '&'
child[b]['value'] = 0
# fall through to check for '&'
else:
return
if nt in ('&', '|'):
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b]
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST':
val = child[b]['value']
if nt == '|' and val == 0 or nt == '&' and (val == -1 or val == 1 and self.IsBool(child[a])):
# a|0 -> a
# a&-1 -> a
# a&1 -> a if a is boolean
parent[index] = child[a]
return
if nt == '|' and (val == -1 or val == 1 and self.IsBool(child[a])) or nt == '&' and val == 0:
# a|-1 -> -1 if a is SEF
# a|1 -> 1 if a is bool and SEF
# a&0 -> 0 if a is SEF
if 'SEF' in child[a]:
parent[index] = child[b]
# Apply boolean distributivity
applied = False
opposite = '&' if nt == '|' else '|'
if child[0]['nt'] == child[1]['nt'] == opposite:
left = child[0]['ch']
right = child[1]['ch']
for c, d in ((0, 0), (0, 1), (1, 0), (1, 1)):
if self.CompareTrees(left[c], right[d]):
child[1]['nt'] = nt
nt = node['nt'] = opposite
opposite = child[1]['nt']
right[d] = left[1 - c]
child[0] = left[c]
applied = True
break
# Apply absorption, possibly after distributivity
if child[0]['nt'] == opposite or child[1]['nt'] == opposite:
c = 0 if child[1]['nt'] == opposite else 1
for d in (0, 1):
if (self.CompareTrees(child[c], child[1 - c]['ch'][d])
and 'SEF' in child[1 - c]['ch'][1 - d]
):
node = parent[index] = child[c]
nt = node['nt']
child = node['ch'] if 'ch' in node else None
applied = True
break
if applied:
# Re-fold
self.FoldTree(parent, index)
return
if nt == '^':
a, b = 0, 1
if child[a]['nt'] == 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST' and child[b]['value'] in (0, -1):
if child[b]['value'] == 0:
parent[index] = child[a]
else:
node['nt'] = '~'
node['ch'] = [child[a]]
return
if nt == '&&' or nt == '||':
SEF = 'SEF' in node
if nt == '||':
parent[index] = node = {'nt':'!', 't':'integer', 'ch':[
{'nt':'!', 't':'integer', 'ch':[
{'nt':'|', 't':'integer', 'ch':[child[0], child[1]]}
]}]}
if SEF:
node['SEF'] = node['ch'][0]['SEF'] = node['ch'][0]['ch'][0]['SEF'] = True
else:
parent[index] = node = {'nt':'!', 't':'integer', 'ch':[
{'nt':'|', 't':'integer', 'ch':[
{'nt':'!', 't':'integer', 'ch':[child[0]]}
,
{'nt':'!', 't':'integer', 'ch':[child[1]]}
]}]}
if SEF:
node['SEF'] = node['ch'][0]['SEF'] = True
if 'SEF' in node['ch'][0]['ch'][0]['ch'][0]:
node['ch'][0]['ch'][0]['SEF'] = True
if 'SEF' in node['ch'][0]['ch'][1]['ch'][0]:
node['ch'][0]['ch'][1]['SEF'] = True
# Make another pass with the substitution
self.FoldTree(parent, index)
return
return
if nt in self.assign_ops:
# Transform the whole thing into a regular assignment, as there are
# no gains and it simplifies the optimization.
# An assignment has no side effects only if it's of the form x = x.
if nt != '=':
# Replace the node with the expression alone
# e.g. a += b -> a + b
node['nt'] = nt[:-1]
# Linden Craziness: int *= float; is valid (but no other
# int op= float is). It's actually performed as
# i = (integer)(i + (f));
# This breaks equivalence of x op= y as x = x op (y) so we add
# the explicit type cast here.
if nt == '*=' and child[0]['t'] == 'integer' and child[1]['t'] == 'float':
node['t'] = 'float' # Addition shall return float.
node = self.Cast(node, 'integer')
# And wrap it in an assignment.
child = [child[0].copy(), node]
node = parent[index] = {'nt':'=', 't':child[0]['t'], 'ch':child}
# We have a regular assignment either way now. Simplify the RHS.
self.FoldTree(node['ch'], 1)
chkequal = child[1]['ch'][0] if child[1]['nt'] == '=' else child[1]
if child[0]['nt'] == chkequal['nt'] == 'IDENT' \
and chkequal['name'] == child[0]['name'] \
and chkequal['scope'] == child[0]['scope'] \
or child[0]['nt'] == chkequal['nt'] == 'FLD' \
and chkequal['ch'][0]['name'] == child[0]['ch'][0]['name'] \
and chkequal['ch'][0]['scope'] == child[0]['ch'][0]['scope'] \
and chkequal['fld'] == child[0]['fld']:
parent[index] = child[1]
return
if nt == 'IDENT' or nt == 'FLD':
node['SEF'] = True
if self.globalmode:
ident = child[0] if nt == 'FLD' else node
# Resolve constant values so they can be optimized
sym = self.symtab[ident['scope']][ident['name']]
defn = self.tree[sym['Loc']]
assert defn['name'] == ident['name']
# Assume we already were there
if 'ch' in defn:
val = defn['ch'][0]
if val['nt'] != 'CONST' or ident['t'] == 'key':
return
val = val.copy()
else:
val = {'nt':'CONST', 't':defn['t'],
'value':self.DefaultValues[defn['t']]}
if nt == 'FLD':
val = {'nt':'CONST', 't':'float',
'value':val['value']['xyzs'.index(node['fld'])]}
parent[index] = val
return
if nt == 'FNCALL':
name = node['name']
SEFargs = True
CONSTargs = True
for idx in xrange(len(child)-1, -1, -1):
self.FoldTree(child, idx)
# Function is not SEF if any argument is not SEF
if 'SEF' not in child[idx]:
SEFargs = False
# Function is not a constant if any argument is not a constant
if child[idx]['nt'] != 'CONST':
CONSTargs = False
sym = self.symtab[0][name]
OptimizeArgs(node, sym)
try:
if 'Fn' in sym and ('SEF' in sym or lslcommon.IsCalc):
# It's side-effect free if the children are and the function
# is marked as SEF.
if SEFargs:
node['SEF'] = True
if CONSTargs:
# Call it
fn = sym['Fn']
args = [arg['value'] for arg in child]
assert len(args) == len(sym['ParamTypes'])
try:
# May raise ELSLCantCompute
if name[:10] == 'llDetected':
value = fn(*args, event=self.CurEvent)
else:
value = fn(*args)
finally:
del args
if not self.foldtabs:
generatesTabs = (
isinstance(value, unicode) and '\t' in value
or type(value) == list
and any(isinstance(x, unicode)
and '\t' in x for x in value)
)
if generatesTabs:
if self.warntabs:
warning(u"Can't optimize call to %s"
u" because it would generate a tab"
u" character (you can force the "
u" optimization with the 'foldtabs'"
u" option, or disable this warning by"
u" disabling the 'warntabs' option)."
% name.decode('utf8'))
raise lslfuncs.ELSLCantCompute()
# Replace with a constant
parent[index] = {'nt':'CONST', 't':node['t'],
'value':value, 'SEF':True}
return
elif SEFargs and 'SEF' in self.symtab[0][name]:
# The function is marked as SEF in the symbol table, and the
# arguments are all side-effect-free. The result is SEF.
node['SEF'] = True
except lslfuncs.ELSLCantCompute:
# Don't transform the tree if function is not computable
pass
# At this point, we have resolved whether the function is SEF,
# or whether the function resolves to a constant.
OptimizeFunc(self, parent, index)
return
if nt == 'PRINT':
self.FoldTree(child, 0)
# PRINT is considered to have side effects. If it's there, assume
# there's a reason.
return
if nt == 'EXPR':
self.FoldTree(child, 0)
if 'SEF' in child[0]:
node['SEF'] = True
return
if nt == 'FNDEF':
# used when folding llDetected* function calls
if 'scope' in node:
# function definition
self.CurEvent = None
else:
# event definition
self.CurEvent = node['name']
self.FoldTree(child, 0)
# TODO: This works, but analysis of code paths is DCR's thing
# and this is incomplete, e.g. x(){{return;}} is not detected.
while 'ch' in child[0] and child[0]['ch']:
last = child[0]['ch'][-1]
if last['nt'] != 'RETURN' or 'ch' in last:
break
del child[0]['ch'][-1]
if 'SEF' in child[0]:
node['SEF'] = True
if node['name'] in self.symtab[0]:
# Mark the symbol table entry if it's not an event.
self.symtab[0][node['name']]['SEF'] = True
return
if nt in ('VECTOR', 'ROTATION', 'LIST'):
isconst = True
issef = True
for idx in xrange(len(child)):
self.FoldTree(child, idx)
if child[idx]['nt'] != 'CONST':
isconst = False
if 'SEF' not in child[idx]:
issef = False
if isconst:
value = [x['value'] for x in child]
if nt == 'VECTOR':
value = Vector([lslfuncs.ff(x) for x in value])
elif nt == 'ROTATION':
value = Quaternion([lslfuncs.ff(x) for x in value])
parent[index] = {'nt':'CONST', 'SEF':True, 't':node['t'],
'value':value}
return
if issef:
node['SEF'] = True
return
if nt == 'STDEF':
for idx in xrange(len(child)):
self.FoldTree(child, idx)
return
if nt == '{}':
idx = 0
issef = True
while idx < len(child):
self.FoldTree(child, idx)
self.FoldStmt(child, idx)
if 'SEF' not in child[idx]:
issef = False
if child[idx]['nt'] == ';' \
or child[idx]['nt'] == '{}' and not child[idx]['ch']:
del child[idx]
else:
if 'StSw' in child[idx]:
node['StSw'] = True
idx += 1
if issef:
node['SEF'] = True
return
if nt == 'IF':
# TODO: Swap IF/ELSE if both present and cond starts with !
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if child[0]['nt'] == 'CONST':
# We might be able to remove one of the branches.
if lslfuncs.cond(child[0]['value']):
self.FoldTree(child, 1)
# If it has a state switch, the if() must be preserved
# (but the else branch may be removed).
if 'StSw' in child[1]:
# TODO: Get rid of StSw craziness and make another pass
# to put them under conditionals if present (if bald
# state switches are present, it means they are the
# result of optimization so they must be wrapped in an
# IF statement). The current approach leaves unnecessary
# IFs behind.
if len(child) == 3 and child[2]['nt'] != '@':
del child[2] # Delete ELSE if present
return
else:
self.FoldStmt(child, 1)
if len(child) == 3 and child[2]['nt'] == '@':
# Corner case. The label is in the same scope as
# this statement, so it must be preserved just in
# case it's jumped to.
return
parent[index] = child[1]
return
elif len(child) == 3:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
if child[1]['nt'] == '@':
# Corner case. The label is in the same scope as this
# statement, so it must be preserved just in case it's
# jumped to.
if not self.DoesSomething(child[2]):
del child[2]
return
parent[index] = child[2]
return
else:
# No ELSE branch, replace the statement with an empty one.
if child[1]['nt'] == '@':
# Corner case. The label is in the same scope as this
# statement, so it must be preserved just in case it's
# jumped to.
parent[index] = child[1]
return
parent[index] = {'nt':';', 't':None, 'SEF':True}
return
else:
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
if len(child) > 2:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
if not self.DoesSomething(child[2]):
# no point in "... else ;" - remove else branch
del child[2]
if all('SEF' in subnode for subnode in child):
node['SEF'] = True
return
if nt == 'WHILE':
# Loops are not considered side-effect free. If the expression is
# TRUE, it's definitely not SEF. If it's FALSE, it will be optimized
# out anyway. Otherwise we just don't know if it may be infinite,
# even if every component is SEF.
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if child[0]['nt'] == 'CONST':
# See if the whole WHILE can be eliminated.
if lslfuncs.cond(child[0]['value']):
# Endless loop which must be kept.
# Recurse on the statement.
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
else:
if child[1]['nt'] == '@':
# Corner case. The label is in the same scope as this
# statement, so it must be preserved just in case it's
# jumped to.
parent[index] = child[1]
else:
# Whole statement can be removed.
parent[index] = {'nt':';', 't':None, 'SEF':True}
return
else:
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
return
if nt == 'DO':
self.FoldTree(child, 0) # This one is always executed.
self.FoldStmt(child, 0)
self.ExpandCondition(child, 1)
self.FoldTree(child, 1)
self.FoldCond(child, 1)
# See if the latest part is a constant.
if child[1]['nt'] == 'CONST':
if not lslfuncs.cond(child[1]['value']):
# Only one go. Replace with the statement(s).
parent[index] = child[0]
return
if nt == 'FOR':
assert child[0]['nt'] == 'EXPRLIST'
assert child[2]['nt'] == 'EXPRLIST'
self.FoldAndRemoveEmptyStmts(child[0]['ch'])
self.ExpandCondition(child, 1) # Condition.
self.FoldTree(child, 1)
self.FoldCond(child, 1)
if child[1]['nt'] == 'CONST':
# FOR is delicate. It can have multiple expressions at start.
# And if there is more than one, these expressions will need a
# new block, which means new scope, which is dangerous.
# They are expressions, no declarations or labels allowed, thus
# no new identifiers may be created in the new scope, but it
# still feels dodgy.
if lslfuncs.cond(child[1]['value']):
# Endless loop. Traverse the loop and the iterator.
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
else:
# Convert expression list to code block.
exprlist = []
for expr in child[0]['ch']:
# Fold into expression statements.
exprlist.append({'nt':'EXPR', 't':expr['t'], 'ch':[expr]})
if (exprlist or child[2]['ch']) and child[3]['nt'] == '@':
# Corner case. We can't optimize this to one single
# statement, so we leave it as-is.
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
return
# returns type None, as FOR does
if exprlist:
# We're in the case where there are expressions. If any
# remain, they are not SEF (or they would have been
# removed earlier) so don't mark this node as SEF.
parent[index] = {'nt':'{}', 't':None, 'ch':exprlist}
else:
if child[3]['nt'] == '@':
# Corner case. The label is in the same scope as
# this statement, so it must be preserved. Also,
# jumping inside the loop would execute the
# iterator, so we fold it.
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
if not child[2]['ch']:
# if there's something in the 2nd list,
# preserve the whole statement, otherwise
# replace it with the label
parent[index] = child[3]
else:
parent[index] = {'nt':';', 't':None, 'SEF': True}
return
else:
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
return
if nt == 'RETURN':
if child:
self.FoldTree(child, 0)
return
if nt == 'DECL':
if child:
# Check if child is a simple_expr. If it is, then we keep the
# original attached to the folded node to use it in the output.
if child[0].pop('Simple', False):
orig = self.CopyNode(child[0])
self.FoldTree(child, 0)
child[0]['orig'] = orig
else:
self.FoldTree(child, 0)
# Remove assignment if integer zero.
if node['t'] == 'integer' and child[0]['nt'] == 'CONST' \
and not child[0]['value']:
del node['ch']
return
else:
# Add assignment if vector, rotation or float.
if node['t'] in ('float', 'vector', 'rotation'):
typ = node['t']
node['ch'] = [{'nt':'CONST', 't':typ, 'SEF': True,
'value': 0.0 if typ == 'float' else
ZERO_VECTOR if typ == 'vector' else
ZERO_ROTATION}]
# Declarations always have side effects.
return
if nt == 'STSW':
# State switch always has side effects.
node['StSw'] = True
return
if nt == 'SUBIDX':
# Recurse to every child. It's SEF if all children are.
idx = 0
issef = True
while idx < len(child):
self.FoldTree(child, idx)
if 'SEF' not in child[idx]:
issef = False
idx += 1
if issef:
node['SEF'] = True
return
if nt == ';':
node['SEF'] = True
return
if nt in ('JUMP', '@', 'V++', 'V--', '--V', '++V', 'LAMBDA'):
# Except LAMBDA, these all have side effects, as in, can't be
# eliminated as statements.
# LAMBDA can't be eliminated without scrolling Loc's.
return
assert False, 'Internal error: This should not happen, node type = ' \
+ nt # pragma: no cover
def IsValidGlobalIdOrConst(self, node):
# nan can't be represented as a simple constant; all others are valid
return not (node['nt'] == 'CONST' and node['t'] == 'float'
and math.isnan(node['value']))
def IsValidGlobalConstant(self, decl):
if 'ch' not in decl:
return True
expr = decl['ch'][0]
if expr['nt'] in ('CONST', 'IDENT'):
return self.IsValidGlobalIdOrConst(expr)
if expr['nt'] not in ('VECTOR', 'ROTATION', 'LIST'):
return False
return all(elem['nt'] in ('CONST', 'IDENT')
and self.IsValidGlobalIdOrConst(elem)
for elem in expr['ch'])
def FoldScript(self, warningpass = True):
"""Optimize the symbolic table symtab in place. Requires a table of
predefined functions for folding constants.
"""
self.globalmode = False
tree = self.tree
self.CurEvent = None
FuncOptSetup()
# Constant folding pass. It does some other optimizations along the way.
for idx in xrange(len(tree)):
if tree[idx]['nt'] == 'DECL':
self.globalmode = True
self.FoldTree(tree, idx)
self.globalmode = False
if warningpass and not self.IsValidGlobalConstant(tree[idx]):
warning(u"Expression in globals doesn't resolve to a simple constant.")
else:
self.FoldTree(tree, idx)