LSL-PyOptimizer/lslopt/lslfoldconst.py
Sei Lisa d0d6d6744b Bump copyright year
The help text in main.py was still at 2015. Oops.
2018-03-23 16:36:45 +01:00

1934 lines
86 KiB
Python

# (C) Copyright 2015-2018 Sei Lisa. All rights reserved.
#
# This file is part of LSL PyOptimizer.
#
# LSL PyOptimizer is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# LSL PyOptimizer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with LSL PyOptimizer. If not, see <http://www.gnu.org/licenses/>.
# Constant folding and simplification of expressions and statements.
import lslcommon
from lslcommon import Vector, Quaternion, warning
import lslfuncs
from lslfuncs import ZERO_VECTOR, ZERO_ROTATION
import math
from lslfuncopt import OptimizeFunc, OptimizeArgs, FuncOptSetup
class foldconst(object):
def isLocalVar(self, node):
name = node['name']
scope = node['scope']
return self.symtab[scope][name]['Kind'] == 'v' \
and 'Loc' not in self.symtab[scope][name]
def GetListNodeLength(self, node):
"""Get the length of a list that is expressed as a CONST, LIST or CAST
node, or False if it can't be determined.
"""
assert node['t'] == 'list'
nt = node['nt']
if nt == 'CAST':
if node['ch'][0]['t'] == 'list':
return self.GetListNodeLength(node['ch'][0])
return 1
if nt == 'CONST': # constant list
return len(node['value'])
if nt == 'LIST': # list constructor
return len(node['ch'])
return False
def GetListNodeElement(self, node, index):
"""Get an element of a list expressed as a CONST, LIST or CAST node.
If the index is out of range, return False; otherwise the result can be
either a node or a constant.
"""
assert node['t'] == 'list'
nt = node['nt']
if nt == 'CAST':
# (list)list_expr should have been handled in CAST
assert node['ch'][0]['t'] != 'list'
if index == 0 or index == -1:
return node['ch'][0]
return False
if nt == 'CONST':
try:
return node['value'][index]
except IndexError:
pass
return False
if nt == 'LIST':
try:
return node['ch'][index]
except IndexError:
return False
return False
def ConstFromNodeOrConst(self, nodeOrConst):
"""Return the constant if the value is a node and represents a constant,
or if the value is directly a constant, and False otherwise.
"""
if type(nodeOrConst) == dict:
if nodeOrConst['nt'] == 'CONST':
return nodeOrConst['value']
return False
return nodeOrConst
def TypeFromNodeOrConst(self, nodeOrConst):
"""Return the LSL type of a node or constant."""
if nodeOrConst is False:
return False
if type(nodeOrConst) == dict:
return nodeOrConst['t']
return lslcommon.PythonType2LSL[type(nodeOrConst)]
def FoldAndRemoveEmptyStmts(self, lst):
"""Utility function for elimination of useless expressions in FOR"""
idx = 0
while idx < len(lst):
self.FoldTree(lst, idx)
self.FoldStmt(lst, idx)
# If eliminated, it must be totally removed. A ';' won't do.
if lst[idx]['nt'] == ';':
del lst[idx]
else:
idx += 1
def DoesSomething(self, node, labels = True):
"""Tell if a subtree does something or is just empty statements
(a pure combination of ';' and '{}'). Labels are the top level are
considered to do something if labels is True, and vice versa.
Not to be confused with lslparse.does_something which always includes
labels, and applies to a block's statement list, not to a node.
"""
maybe_label = ';' if labels else '@'
if maybe_label != node['nt'] != ';':
if node['nt'] == '{}':
for subnode in node['ch']:
# Labels embedded in {} are not reachable. They do nothing.
if self.DoesSomething(subnode, labels = False):
return True
else:
return True
return False
def CompareTrees(self, node1, node2):
"""Try to compare two subtrees to see if they are equivalent."""
# They MUST be SEF and stable.
if 'SEF' not in node1 or 'SEF' not in node2:
return False
if node1['t'] != node2['t']:
return False
# It's not complete yet.
nt1 = node1['nt']
if nt1 == node2['nt']:
if (nt1 == 'IDENT'
and node1['name'] == node2['name']
and node1['scope'] == node2['scope']
):
return True
if (nt1 == 'FNCALL'
and node1['name'] == node2['name']
and 'uns' not in self.symtab[0][node1['name']]
and all(self.CompareTrees(node1['ch'][i],
node2['ch'][i])
for i in xrange(len(node1['ch'])))
):
return True
if (nt1 == 'CAST'
and self.CompareTrees(node1['ch'][0], node2['ch'][0])
):
return True
if nt1 == 'CONST' and node1['value'] == node2['value']:
return True
if (nt1 in ('!', '~', 'NEG')
and self.CompareTrees(node1['ch'][0], node2['ch'][0])
):
return True
if (nt1 in self.binary_ops
and self.CompareTrees(node1['ch'][0], node2['ch'][0])
and self.CompareTrees(node1['ch'][1], node2['ch'][1])
):
return True
if ((nt1 in ('*', '^', '&', '|', '==') # commutative
or nt1 == '+'
and node1['ch'][0]['t'] not in ('list', 'string')
and node2['ch'][0]['t'] not in ('list', 'string')
)
and self.CompareTrees(node1['ch'][0], node2['ch'][1])
and self.CompareTrees(node1['ch'][1], node2['ch'][0])
):
return True
return False
def FnSEF(self, node):
'''Applied to function call nodes, return whether the node corresponds
to a SEF function.
'''
assert node['nt'] == 'FNCALL'
sym = self.symtab[0][node['name']]
return 'SEF' in sym and sym['SEF'] is True
def FoldStmt(self, parent, index):
"""Simplify a statement."""
node = parent[index]
if node['nt'] == 'EXPR':
node = node['ch'][0]
# If the statement is side-effect-free, remove it as it does nothing.
if 'SEF' in node:
# Side-effect free means that a statement does nothing except
# wasting CPU, and can thus be removed without affecting the
# program. But side effect freedom is propagated from the
# constituents of the statement, e.g. function calls in expressions
# or substatements in FOR, or even individual variables.
#
# Many library functions like llSameGroup or llGetVel() are
# side-effect free. Many other functions like llSleep() or
# llSetScale() are not. User functions may or may not be.
#
# Assignments do have side effects, except those of the form x = x.
# Pre- and post-increment and decrement also have side effects.
# Type casts do not add side effects. Neither do binary operators.
parent[index] = {'nt':';', 't':None, 'SEF': True}
return
# Post-increments take more space than pre-increments.
if node['nt'] in ('V++', 'V--'):
node['nt'] = '++V' if node['nt'] == 'V++' else '--V';
# Function calls are SEF if both the function and the args are SEF.
# If the statement is a function call and the function is marked as SEF
# at this point, it means the arguments are not SEF. Replace the node
# in that case with a block.
if (node['nt'] == 'FNCALL' and 'Loc' in self.symtab[0][node['name']]
and self.FnSEF(node)
):
parent[index] = {'nt':'{}', 't':None, 'ch':
[{'nt':'EXPR','t':x['t'],'ch':[x]} for x in node['ch']]}
self.FoldTree(parent, index)
return
def ExpandCondition(self, parent, index):
"""IF, FOR, WHILE and DO...WHILE conditions accept several types, not
just integer. However, leaving them as-is generates longer code than if
we expand them and let the optimizer optimize, for float, vector and
rotation, and no matter the optimization in the case of list.
"""
ctyp = parent[index]['t']
# Under LSO, this would break the fact that 1-element lists count as
# false, so we don't do it for LSO lists.
if (ctyp in ('float', 'vector', 'rotation', 'string')
or ctyp == 'list' and not lslcommon.LSO
):
parent[index] = {'nt':'!=', 't':'integer', 'ch':[parent[index],
{'nt':'CONST', 't':ctyp, 'value':
0.0 if ctyp == 'float'
else ZERO_VECTOR if ctyp == 'vector'
else ZERO_ROTATION if ctyp == 'rotation'
else u"" if ctyp == 'string'
else []}]}
parent[index]['SEF'] = 'SEF' in parent[index]['ch'][0]
def IsBool(self, node):
"""Some operators return 0 or 1, and that allows simplification of
boolean expressions. This function returns whether we know for sure
that the result is boolean.
"""
nt = node['nt']
if nt in ('<', '!', '>', '<=', '>=', '==', '||', '&&') \
or nt == '!=' and node['ch'][0]['t'] != 'list' \
or nt == '&' and (self.IsBool(node['ch'][0]) or self.IsBool(node['ch'][1])) \
or nt in ('|', '^', '*') and self.IsBool(node['ch'][0]) and self.IsBool(node['ch'][1]) \
or nt == 'CONST' and node['t'] == 'integer' and node['value'] in (0, 1):
return True
if nt == 'FNCALL':
sym = self.symtab[0][node['name']]
if sym['Type'] == 'integer' and 'min' in sym and 'max' in sym \
and sym['min'] >= 0 and sym['max'] <= 1:
return True
return False
def FoldCond(self, parent, index, ParentIsNegation = False):
"""When we know that the parent is interested only in the truth value
of the node, we can perform further optimizations. This function deals
with them.
"""
node = parent[index]
nt = node['nt']
if nt in ('CONST', 'IDENT', 'FLD'):
if node['nt'] == 'CONST':
node['t'] = 'integer'
node['value'] = 1 if lslfuncs.cond(node['value']) else 0
return # Nothing to do if it's already simplified.
child = node['ch'] if 'ch' in node else None
if nt == 'FNCALL' and 'strlen' in self.symtab[0][node['name']]:
# llStringLength(expr) -> !(expr == "")
node = {'nt':'==', 't':'integer',
'ch':[child[0],
{'nt':'CONST', 't':'string',
'value':u''}]}
node = {'nt':'!', 't':'integer', 'ch':[node]}
# new node is SEF if the argument to llStringLength is
if 'SEF' in child[0]:
node['SEF'] = True
node['ch'][0]['SEF'] = True
parent[index] = node
nt = '!'
child = node['ch']
# fall through to keep optimizing if necessary
if nt == '!':
self.FoldCond(child, 0, True)
if child[0]['nt'] == '!':
# bool(!!a) equals bool(a)
parent[index] = child[0]['ch'][0]
return
if (child[0]['nt'] == '==' and child[0]['ch'][0]['t'] == 'integer'
and child[0]['ch'][1]['t'] == 'integer'
):
# We have !(int == int). Replace with int ^ int or with int - 1
node = parent[index] = child[0] # remove the negation
child = child[0]['ch']
if child[0]['nt'] == 'CONST' and child[0]['value'] == 1 \
or child[1]['nt'] == 'CONST' and child[1]['value'] == 1:
# a != 1 -> a - 1 (which FoldTree will transform to ~-a)
node['nt'] = '-'
else:
# This converts != to ^; FoldTree will simplify ^-1 to ~
# and optimize out ^0.
node['nt'] = '^'
self.FoldTree(parent, index)
return
if nt == 'NEG':
# bool(-a) equals bool(a)
parent[index] = child[0]
self.FoldCond(parent, index, ParentIsNegation)
return
if nt in self.binary_ops and child[0]['t'] == child[1]['t'] == 'integer':
if nt == '==':
if child[0]['nt'] == 'CONST' and -1 <= child[0]['value'] <= 1 \
or child[1]['nt'] == 'CONST' and -1 <= child[1]['value'] <= 1:
# Transform a==b into !(a-b) if either a or b are in [-1, 1]
parent[index] = {'nt':'!', 't':'integer', 'ch':[node]}
node['nt'] = '-'
self.FoldTree(parent, index)
return
if nt == '|':
# In a boolean context, the operands count as booleans.
self.FoldCond(child, 0)
self.FoldCond(child, 1)
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b] if present
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if (child[b]['nt'] == 'CONST' and child[b]['value']
and 'SEF' in child[a]
):
node = parent[index] = child[b]
node['value'] = -1
return
del a, b
# Specific optimization to catch a frequent bitwise test.
# If b and c are constant powers of two:
# !(a & b) | !(a & c) -> ~(a|~(b|c))
# e.g. if (a & 4 && a & 8) -> if (!~(a|-13))
if (child[0]['nt'] == '!' and child[0]['ch'][0]['nt'] == '&'
and child[1]['nt'] == '!' and child[1]['ch'][0]['nt'] == '&'
):
and1 = child[0]['ch'][0]['ch']
and2 = child[1]['ch'][0]['ch']
a, b, c, d = 0, 1, 0, 1
if and1[b]['nt'] != 'CONST':
a, b = b, a
if and2[d]['nt'] != 'CONST':
c, d = d, c
if and1[b]['nt'] == and2[d]['nt'] == 'CONST':
val1 = and1[b]['value']
val2 = and2[d]['value']
if (val1 and val2
# power of 2
and (val1 & (val1 - 1) & 0xFFFFFFFF) == 0
and (val2 & (val2 - 1) & 0xFFFFFFFF) == 0
and self.CompareTrees(and1[a], and2[c])
):
# Check passed
child[0] = and1[a]
child[1] = and1[b]
child[1]['value'] = ~(val1 | val2)
parent[index] = {'nt':'~', 't':'integer',
'ch':[node]}
if 'SEF' in node:
parent[index]['SEF'] = True
self.FoldCond(parent, index, ParentIsNegation)
return
del val1, val2
del a, b, c, d, and1, and2
# Absorb further flags, to allow chaining of &&
# If ~r and s are constants, and s is a power of two:
# (!~(x|~r) && x&s) -> !~(x|(~r&~s))
# This is implemented as:
# ~(x|~r) | !(x&s) -> ~(x|~(r|s))
# because that's the intermediate result after conversion of &&.
# a and b are going to be the children of the main |
# a is going to be child that has the ~
# b is the other child (with the !)
# c is the child of ~ which has x
# d is the child of ~ with the constant ~r
# e is the child of ! which has x
# f is the child of ! with the constant s
a, b = 0, 1
if child[a]['nt'] != '~':
a, b = b, a
c, d = 0, 1
if child[a]['nt'] == '~' and child[a]['ch'][0]['nt'] == '|':
if child[a]['ch'][0]['ch'][d]['nt'] != 'CONST':
c, d = d, c
e, f = 0, 1
if child[b]['nt'] == '!' and child[b]['ch'][0]['nt'] == '&':
if child[b]['ch'][0]['ch'][f]['nt'] != 'CONST':
e, f = f, e
# All pointers are ready to check applicability.
if (child[a]['nt'] == '~' and child[a]['ch'][0]['nt'] == '|'
and child[b]['nt'] == '!' and child[b]['ch'][0]['nt'] == '&'
):
ch1 = child[a]['ch'][0]['ch']
ch2 = child[b]['ch'][0]['ch']
if (ch1[d]['nt'] == 'CONST' and ch2[f]['nt'] == 'CONST'
and (ch2[f]['value'] & (ch2[f]['value'] - 1)
& 0xFFFFFFFF) == 0
):
if self.CompareTrees(ch1[c], ch2[e]):
# We're in that case. Apply optimization.
parent[index] = child[a]
ch1[d]['value'] &= ~ch2[f]['value']
return
del ch1, ch2
del a, b, c, d, e, f
# Check if the operands are a negation ('!') or can be inverted
# without adding more than 1 byte and are boolean.
# We only support '<' and some cases of '&' (are there more?)
Invertible = [False, False]
for a in (0, 1):
Invertible[a] = child[a]['nt'] == '!'
if child[a]['nt'] == '<' \
and child[a]['ch'][0]['t'] == child[a]['ch'][1]['t'] == 'integer':
if child[a]['ch'][0]['nt'] == 'CONST' \
and child[a]['ch'][0]['value'] != 2147483647 \
or child[a]['ch'][1]['nt'] == 'CONST' \
and child[a]['ch'][1]['value'] != int(-2147483648):
Invertible[a] = True
# Deal with our optimization of a<0 -> a&0x80000000 (see below)
if child[a]['nt'] == '&' and (
child[a]['ch'][0]['nt'] == 'CONST' and child[a]['ch'][0]['value'] == int(-2147483648)
or child[a]['ch'][1]['nt'] == 'CONST' and child[a]['ch'][1]['value'] == int(-2147483648)
):
Invertible[a] |= ParentIsNegation
if (Invertible[0] or Invertible[1]) and ParentIsNegation:
# !(!a|b) -> a&-!b or a&!b
# This deals with the part after the first !, transforming
# it into (!a|!!b) so that the outer node can optimize the
# negated version to a simple &.
for a in (0, 1):
if not Invertible[a]:
child[a] = {'nt':'!', 't':'integer',
'ch':[{'nt':'!', 't':'integer', 'ch':[child[a]]}]
}
Invertible[a] = True
if Invertible[0] and Invertible[1]:
# Both operands are negated, or negable.
# Make them a negation if they aren't already.
for a in (0, 1):
if child[a]['nt'] == '<':
if child[a]['ch'][0]['nt'] == 'CONST':
child[a]['ch'][0]['value'] += 1
else:
child[a]['ch'][1]['value'] -= 1
child[a]['ch'][0], child[a]['ch'][1] = \
child[a]['ch'][1], child[a]['ch'][0]
child[a] = {'nt':'!','t':'integer','ch':[child[a]]}
elif child[a]['nt'] == '&':
child[a] = {'nt':'!', 't':'integer',
'ch':[{'nt':'!', 't':'integer', 'ch':[child[a]]}]
}
self.FoldTree(child[a]['ch'], 0)
# If they are boolean, the expression can be turned into
# !(a&b) which hopefully will have a ! uptree if it came
# from a '&&' and cancel out (if not, we still remove one
# ! so it's good). If one is bool, another transformation
# can be performed: !nonbool|!bool -> !(nonbool&-bool)
# which is still a gain.
# Deal with operands in any order
a, b = 0, 1
# Put the bool in child[b]['ch'][0].
if not self.IsBool(child[b]['ch'][0]):
a, b = 1, 0
if self.IsBool(child[b]['ch'][0]):
if not self.IsBool(child[a]['ch'][0]):
child[b]['ch'][0] = {'nt':'NEG','t':'integer',
'ch':[child[b]['ch'][0]]}
node = parent[index] = {'nt':'!', 't':'integer',
'ch':[{'nt':'&','t':'integer',
'ch':[child[0]['ch'][0],
child[1]['ch'][0]]
}]
}
# Fold the node we've just synthesized
# (this deals with SEF)
self.FoldTree(parent, index)
return
if nt == '<' and child[0]['t'] == child[1]['t'] == 'integer':
sym = None
for a in (0, 1):
if child[a]['nt'] == 'FNCALL':
sym = self.symtab[0][child[a]['name']]
break
# cond(FNCALL < 0) -> cond(~FNCALL) if min == -1
if (child[1]['nt'] == 'CONST' and child[1]['value'] == 0
and child[0]['nt'] == 'FNCALL'
and 'min' in sym and sym['min'] == -1
):
node = parent[index] = {'nt':'~', 't':'integer',
'ch':[child[0]]}
self.FoldTree(parent, index)
return
# cond(FNCALL > -1) -> cond(!~FNCALL) if min == -1
if (child[0]['nt'] == 'CONST' and child[0]['value'] == -1
and child[1]['nt'] == 'FNCALL'
and 'min' in sym and sym['min'] == -1
):
node = parent[index] = {'nt':'!', 't':'integer',
'ch':[{'nt':'~', 't':'integer',
'ch':[child[1]]}
]}
self.FoldTree(parent, index)
return
# cond(FNCALL < 1) -> cond(!FNCALL) if min == 0
if (child[1]['nt'] == 'CONST' and child[1]['value'] == 1
and child[0]['nt'] == 'FNCALL'
and 'min' in sym and sym['min'] == 0
):
node = parent[index] = {'nt':'!', 't':'integer',
'ch':[child[0]]}
self.FoldTree(parent, index)
return
# cond(FNCALL > 0) -> cond(FNCALL) if min == 0
if (child[0]['nt'] == 'CONST' and child[0]['value'] == 0
and child[1]['nt'] == 'FNCALL'
and 'min' in sym and sym['min'] == 0
):
node = parent[index] = child[1]
self.FoldTree(parent, index)
return
if nt == '&':
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b], if present
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST' and child[b]['value'] == int(-2147483648) \
and child[a]['nt'] == 'FNCALL':
sym = self.symtab[0][child[a]['name']]
if 'min' in sym and sym['min'] == -1:
node = parent[index] = {'nt':'~', 't':'integer',
'ch':[child[a]]}
self.FoldTree(parent, index)
return
def CopyNode(self, node):
'''This is mainly for simple_expr so no need to go deeper than 1 level
'''
ret = node.copy()
if 'ch' in ret:
new = []
for subnode in ret['ch']:
new.append(self.CopyNode(subnode))
ret['ch'] = new
return ret
def FoldTree(self, parent, index):
"""Recursively traverse the tree to fold constants, changing it in
place.
Also optimizes away IF, WHILE, etc.
"""
node = parent[index]
nt = node['nt']
child = node['ch'] if 'ch' in node else None
if nt == 'CONST':
# Job already done. But mark as side-effect free.
node['SEF'] = True
return
if nt == 'CAST':
self.FoldTree(child, 0)
if 'SEF' in child[0]:
node['SEF'] = True
if child[0]['nt'] == 'CONST':
# Enable key constants. We'll typecast them back on output, but
# this enables some optimizations.
#if node['t'] != 'key': # key constants not possible
parent[index] = {'nt':'CONST', 't':node['t'], 'SEF':True,
'value':lslfuncs.typecast(
child[0]['value'], lslcommon.LSLType2Python[node['t']])}
# Remove casts of a type to the same type (NOP in Mono)
# This is not an optimization by itself, but it simplifies the job,
# by not needing to look into nested casts like (key)((key)...)
while node['nt'] == 'CAST' and child[0]['t'] == node['t']:
parent[index] = node = child[0]
if 'ch' not in node:
break
child = node['ch']
return
if nt == 'NEG':
self.FoldTree(child, 0)
if child[0]['nt'] == '+' and (child[0]['ch'][0]['nt'] == 'NEG'
or child[0]['ch'][1]['nt'] == 'NEG'):
node = parent[index] = child[0]
child = node['ch']
for a in (0, 1):
if child[a]['nt'] == 'NEG':
child[a] = child[a]['ch'][0]
else:
child[a] = {'nt':'NEG','t':child[a]['t'],'ch':[child[a]]}
self.FoldTree(child, a)
return
if child[0]['nt'] == 'NEG':
# Double negation: - - expr -> expr
node = parent[index] = child[0]['ch'][0]
child = node['ch'] if 'ch' in node else None
elif child[0]['nt'] == 'CONST':
node = parent[index] = child[0]
node['value'] = lslfuncs.neg(node['value'])
child = None
elif 'SEF' in child[0]:
# propagate Side Effect Free flag
node['SEF'] = True
if child and node['nt'] == 'NEG' and child[0]['nt'] == '~':
track = child[0]['ch'][0]
const = 1
while track['nt'] == 'NEG' and track['ch'][0]['nt'] == '~':
const += 1
track = track['ch'][0]['ch'][0]
if const > 2:
# -~-~-~expr -> expr+3
node = {'nt':'CONST', 't':'integer', 'SEF':True, 'value':const}
node = {'nt':'+', 't':'integer', 'ch':[node, track]}
if 'SEF' in track:
node['SEF'] = True
parent[index] = node
return
if nt == '!':
self.FoldTree(child, 0)
self.FoldCond(child, 0, True)
# !! does *not* cancel out (unless in cond)
subexpr = child[0]
snt = subexpr['nt']
if 'SEF' in subexpr:
node['SEF'] = True
if subexpr['nt'] == 'CONST':
node = parent[index] = subexpr
node['value'] = int(not node['value'])
return
if snt == '<':
lop = subexpr['ch'][0]
rop = subexpr['ch'][1]
if lop['nt'] == 'CONST' and lop['t'] == rop['t'] == 'integer' \
and lop['value'] < 2147483647:
lop['value'] += 1
subexpr['ch'][0], subexpr['ch'][1] = subexpr['ch'][1], subexpr['ch'][0]
parent[index] = subexpr # remove !
return
if rop['nt'] == 'CONST' and lop['t'] == rop['t'] == 'integer' \
and rop['value'] > int(-2147483648):
rop['value'] -= 1
subexpr['ch'][0], subexpr['ch'][1] = subexpr['ch'][1], subexpr['ch'][0]
parent[index] = subexpr # remove !
return
if snt == '&':
a, b = 0, 1
if subexpr['ch'][b]['nt'] != 'CONST':
a, b = 1, 0
if subexpr['ch'][b]['nt'] == 'CONST' and subexpr['ch'][b]['value'] == int(-2147483648):
# !(i & 0x80000000) -> -1 < i (because one of our
# optimizations can be counter-productive, see FoldCond)
subexpr['nt'] = '<'
subexpr['ch'][b]['value'] = -1
subexpr['ch'] = [subexpr['ch'][b], subexpr['ch'][a]]
parent[index] = subexpr
return
if snt == '!=' or snt == '^':
subexpr['nt'] = '=='
parent[index] = subexpr
self.FoldTree(parent, index)
return
return
if nt == '~':
self.FoldTree(child, 0)
subexpr = child[0]
if 'SEF' in subexpr:
node['SEF'] = True
if subexpr['nt'] == '~':
# Double negation: ~~expr
parent[index] = subexpr['ch'][0]
elif subexpr['nt'] == 'CONST':
node = parent[index] = child[0]
node['value'] = ~node['value']
return
if nt in self.binary_ops:
# RTL evaluation
self.FoldTree(child, 1)
self.FoldTree(child, 0)
if 'SEF' in child[0] and 'SEF' in child[1]:
# Propagate SEF flag if both sides are side-effect free.
node['SEF'] = True
optype = node['t']
lval = child[0]
ltype = lval['t']
lnt = lval['nt']
rval = child[1]
rtype = rval['t']
rnt = rval['nt']
if lnt == rnt == 'CONST':
op1 = lval['value']
op2 = rval['value']
if nt == '+':
if ltype == rtype == 'string' and not self.addstrings:
return
result = lslfuncs.add(op1, op2)
elif nt == '-':
result = lslfuncs.sub(op1, op2)
elif nt == '*':
result = lslfuncs.mul(op1, op2)
elif nt == '/':
try:
result = lslfuncs.div(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '%':
try:
result = lslfuncs.mod(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '<<':
result = lslfuncs.S32(op1 << (op2 & 31))
elif nt == '>>':
result = lslfuncs.S32(op1 >> (op2 & 31))
elif nt == '==' or nt == '!=':
result = lslfuncs.compare(op1, op2, Eq = (nt == '=='))
elif nt in ('<', '<=', '>', '>='):
if nt in ('>', '<='):
result = lslfuncs.less(op2, op1)
else:
result = lslfuncs.less(op1, op2)
if nt in ('>=', '<='):
result = 1 - result
elif nt == '|':
result = op1 | op2
elif nt == '^':
result = op1 ^ op2
elif nt == '&':
result = op1 & op2
elif nt == '||':
result = int(bool(op1) or bool(op2))
elif nt == '&&':
result = int(bool(op1) and bool(op2))
else:
assert False, 'Internal error: Operator not found: ' + nt # pragma: no cover
parent[index] = {'nt':'CONST', 't':node['t'], 'SEF':True, 'value':result}
return
# Simplifications for particular operands
if nt == '-':
if optype in ('vector', 'rotation'):
if lnt == 'CONST' and all(component == 0 for component in lval['value']):
# Change <0,0,0[,0]>-expr -> -expr
parent[index] = {'nt':'NEG', 't':node['t'], 'ch':[rval]}
if 'SEF' in rval:
parent[index]['SEF'] = True
elif rnt == 'CONST' and all(component == 0 for component in rval['value']):
# Change expr-<0,0,0[,0]> -> expr
parent[index] = lval
return
# Change - to + - for int/float
nt = node['nt'] = '+'
if child[1]['nt'] == 'CONST':
rval['value'] = lslfuncs.neg(rval['value'])
else:
rnt = 'NEG'
RSEF = 'SEF' in rval
rval = child[1] = {'nt':rnt, 't':rval['t'], 'ch':[rval]}
self.FoldTree(child, 1)
if RSEF:
rval['SEF'] = True
# rtype unchanged
# Fall through to simplify it as '+'
if nt == '+':
# Tough one. Remove neutral elements for the diverse types,
# and more.
# expr + -expr -> 0
# -expr + expr -> 0
if (child[0]['nt'] == 'NEG'
and self.CompareTrees(child[0]['ch'][0], child[1])
or child[1]['nt'] == 'NEG'
and self.CompareTrees(child[1]['ch'][0], child[0])
):
parent[index] = {'nt':'CONST', 't':'integer', 'value':0,
'SEF':True}
return
# Addition of integers, strings, and lists is associative.
# Addition of floats, vectors and rotations would be, except
# for FP precision.
# TODO: associative addition of lists
# Associative lists are trickier, because unlike the others,
# the types of the operands may not be lists
# so e.g. list+(integer+integer) != (list+integer)+integer.
if optype == 'integer' or optype == 'string' and self.addstrings:
if lnt == '+' and rnt == 'CONST' and lval['ch'][1]['nt'] == 'CONST':
# (var + ct1) + ct2 -> var + (ct1 + ct2)
child[1] = {'nt': '+', 't': optype, 'ch':[lval['ch'][1], rval], 'SEF':True}
lval = child[0] = lval['ch'][0]
lnt = lval['nt']
ltype = lval['t']
rtype = optype
# Fold the RHS again now that we have it constant
self.FoldTree(child, 1)
rval = child[1]
rnt = rval['nt']
if optype == 'list' and not (ltype == rtype == 'list'):
if lnt == 'CONST' and not lval['value']:
# [] + nonlist -> (list)nonlist
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index]['SEF'] = 'SEF' in rval
return
if optype in ('vector', 'rotation'):
# not much to do with vectors or quaternions either
if lnt == 'CONST' and all(x == 0 for x in lval['value']):
# Change <0,0,0[,0]>+expr -> expr
parent[index] = rval
elif rnt == 'CONST' and all(x == 0 for x in rval['value']):
# Change expr+<0,0,0[,0]> -> expr
parent[index] = lval
return
# Can't be key, as no combo of addition operands returns key
# All these types evaluate to boolean False when they are
# the neutral addition element.
if optype in ('string', 'float', 'list'):
if lnt == 'CONST' and not lval['value']:
# 0. + expr -> expr
# "" + expr -> expr
# [] + expr -> expr
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index]['SEF'] = 'SEF' in rval
return
if rnt == 'CONST' and not rval['value']:
# expr + 0. -> expr
# expr + "" -> expr
# expr + [] -> expr
parent[index] = self.Cast(lval, optype)
# node is SEF if lval is
parent[index]['SEF'] = 'SEF' in lval
return
if ltype == rtype == 'list':
if (rnt == 'LIST' and len(rval['ch']) == 1
or rnt == 'CONST' and len(rval['value']) == 1
or rnt == 'CAST'
):
# list + (list)element -> list + element
# list + [element] -> list + element
while rnt == 'CAST' and rval['t'] == 'list':
# Remove nested typecasts
# e.g. list + (list)((list)x) -> list + x
rval = parent[index]['ch'][1] = rval['ch'][0]
rnt = rval['nt']
if (rnt == 'LIST' and len(rval['ch']) == 1
and rval['ch'][0]['t'] != 'list'):
# Finally, remove [] wrapper if it's not
# list within list
rval = child[1] = rval['ch'][0]
rnt = rval['nt']
if rnt == 'CONST' and len(rval['value']) == 1:
# list + [constant] -> list + constant
rval['value'] = rval['value'][0]
rtype = rval['t'] = lslcommon.PythonType2LSL[
type(rval['value'])]
return
if (lnt == 'LIST' and len(lval['ch']) == 1
or lnt == 'CONST' and len(lval['value']) == 1
or lnt == 'CAST'
):
# (list)element + list -> element + list
# [element] + list -> element + list
# (list)[element] + list -> element + list
while lnt == 'CAST' and lval['t'] == 'list':
# Remove nested typecasts
# e.g. (list)((list)x) + list -> x + list
lval = parent[index]['ch'][0] = lval['ch'][0]
lnt = lval['nt']
if (lnt == 'LIST' and len(lval['ch']) == 1
and lval['ch'][0]['t'] != 'list'):
# Finally, remove [] wrapper if it's not
# list within list
lval = child[0] = lval['ch'][0]
lnt = lval['nt']
if lnt == 'CONST' and len(lval['value']) == 1:
# [constant] + list -> constant + list
lval['value'] = lval['value'][0]
ltype = lval['t'] = lslcommon.PythonType2LSL[
type(lval['value'])]
return
return
# Must be two integers. This allows for a number of
# optimizations. First the most obvious ones.
if lnt == 'CONST' and lval['value'] == 0:
parent[index] = rval
return
if rnt == 'CONST' and rval['value'] == 0:
parent[index] = lval
return
if lnt != 'CONST' != rnt:
# Neither is const. Two chances to optimize.
# 1. -expr + -expr -> -(expr + expr) (saves 1 byte)
# 2. lvalue + -lvalue -> 0
# There may be other possibilities for optimization,
# e.g. (type)ident + -(type)ident but we only do lvalues
# here. Note these are integers, no NaN involved.
# TODO: Compare the subtrees if they are SEF. If they are
# the same subtree, they can cancel out.
if lnt == rnt == 'NEG':
node = {'nt':'+', 't':optype, 'ch':[lval['ch'][0], rval['ch'][0]]}
SEF = 'SEF' in lval['ch'][0] and 'SEF' in rval['ch'][0]
if SEF:
node['SEF'] = True
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if SEF:
node['SEF'] = True
parent[index] = node
return
if lnt == 'NEG':
# Swap to treat always as expr + -expr for simplicity.
lnt, lval, rnt, rval = rnt, rval, lnt, lval
if lnt == 'IDENT' and rnt == 'NEG' and rval['ch'][0]['nt'] == 'IDENT' \
and lval['name'] == rval['ch'][0]['name']:
# Replace with 0
parent[index] = {'nt':'CONST', 'SEF': True, 't':optype, 'value':0}
return
if lnt == '+' and (lval['ch'][0]['nt'] == 'CONST'
or lval['ch'][1]['nt'] == 'CONST'):
# We have expr + const + const or const + expr + const.
# Addition of integers mod 2^32 is associative and
# commutative, so constants can be merged.
if lval['ch'][0]['nt'] == 'CONST':
rval['value'] = lslfuncs.S32(rval['value'] + lval['ch'][0]['value'])
lval = child[0] = lval['ch'][1]
else:
rval['value'] = lslfuncs.S32(rval['value'] + lval['ch'][1]['value'])
lval = child[0] = lval['ch'][0]
lnt = lval['nt']
if rnt == '+' and (rval['ch'][0]['nt'] == 'CONST'
or rval['ch'][1]['nt'] == 'CONST'):
# const + (expr + const) or const + (const + expr)
# same as above, join them
# FIXME: Isn't this covered by the associative sum above?
pass # TODO: implement const + (expr + const) or const + (const + expr)
if rnt == 'CONST':
# Swap the vars to deal with const in lval always
lval, lnt, rval, rnt = rval, rnt, lval, lnt
RSEF = 'SEF' in rval
if lval['value'] == -1 or lval['value'] == -2:
if rnt == 'NEG': # Cancel the NEG
node = {'nt':'~', 't':optype, 'ch':rval['ch']}
if RSEF:
node['SEF'] = True
else: # Add the NEG
node = {'nt':'NEG', 't':optype, 'ch':[rval]}
if RSEF:
node['SEF'] = True
node = {'nt':'~', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
if lval['value'] == -2:
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
node = {'nt':'~', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
parent[index] = node
return
if lval['value'] == 1 or lval['value'] == 2:
if rnt == '~': # Cancel the ~
node = {'nt':'NEG', 't':optype, 'ch':rval['ch']}
if RSEF:
node['SEF'] = True
else:
node = {'nt':'~', 't':optype, 'ch':[rval]}
if RSEF:
node['SEF'] = True
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
if lval ['value'] == 2:
node = {'nt':'~', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
node = {'nt':'NEG', 't':optype, 'ch':[node]}
if RSEF:
node['SEF'] = True
parent[index] = node
return
# More than 2 becomes counter-productive.
return
if nt == '<<' and child[1]['nt'] == 'CONST':
# Transforming << into multiply saves some bytes.
if child[1]['value'] & 31:
# x << 3 --> x * 8
# we have {<<, something, {CONST n}}
# we transform it into {*, something, {CONST n}}
nt = node['nt'] = '*'
child[1]['value'] = 1 << (child[1]['value'] & 31)
# Fall through to optimize product
else: # x << 0 --> x
parent[index] = child[0]
return
if nt == '%' \
and child[1]['nt'] == 'CONST' \
and child[1]['t'] == 'integer' \
and abs(child[1]['value']) == 1:
# a%1 -> a&0
# a%-1 -> a&0
# (SEF analysis performed below)
nt = node['nt'] = '&'
child[1]['value'] = 0
if nt in ('*', '/'):
# Extract signs outside
if child[0]['nt'] == 'NEG' or child[1]['nt'] == 'NEG':
a, b = 0, 1
if child[b]['nt'] == 'NEG':
a, b = 1, 0
child[a] = child[a]['ch'][0]
parent[index] = node = {'nt':'NEG', 't':node['t'], 'ch':[node]}
if 'SEF' in node['ch'][0]:
node['SEF'] = True
# Fold the new expression
self.FoldTree(parent, index)
return
# Deal with operands in any order
a, b = 0, 1
if child[a]['nt'] == 'CONST' and child[a]['t'] in ('float', 'integer'):
a, b = 1, 0
if child[b]['nt'] == 'CONST':
val = child[b]['value']
# Optimize out signs if possible.
# Note that (-intvar)*floatconst needs cornermath because
# -intvar could equal intvar if intvar = -2147483648,
# so the sign is a no-op and pushing it to floatconst would
# make the result be different.
if child[a]['nt'] == 'NEG' \
and (self.cornermath
or child[a]['t'] != 'integer'
or child[b]['t'] != 'float'
):
# Expression is of the form (-float)*const or (-float)/const or const/(-float)
if val != int(-2147483648) or child[a]['t'] == 'integer': # can't be optimized otherwise
child[a] = child[a]['ch'][0] # remove NEG
child[b]['value'] = val = -val
# Five optimizations corresponding to -2, -1, 0, 1, 2
# for product, and two for division:
# expr * 1 -> expr
# expr * 0 -> 0 if side-effect free
# expr * -1 -> -expr
# ident * 2 -> ident + ident (only if ident is local)
# ident * -2 -> -(ident + ident) (only if ident is local)
# expr/1 -> expr
# expr/-1 -> -expr
if nt == '*' and child[b]['t'] in ('float', 'integer') \
and val in (-2, -1, 0, 1, 2) \
or nt == '/' and b == 1 and val in (-1, 1):
if val == 1:
parent[index] = child[a]
return
if val == 0:
if 'SEF' in child[a]:
parent[index] = child[b]
return
if val == -1:
# Note 0.0*-1 equals -0.0 in LSL, so this is safe
node = parent[index] = {'nt':'NEG', 't':node['t'], 'ch':[child[a]]}
if 'SEF' in child[a]:
node['SEF'] = True
return
# only -2, 2 remain
if child[a]['nt'] == 'IDENT' and self.isLocalVar(child[a]):
child[b] = child[a].copy()
node['nt'] = '+'
if val == -2:
parent[index] = {'nt':'NEG', 't':node['t'], 'ch':[node]}
if 'SEF' in node:
parent[index]['SEF'] = True
return
return
if nt == '==':
if child[0]['t'] == child[1]['t'] == 'integer':
# Deal with operands in any order
a, b = 0, 1
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST':
if child[b]['value'] in (-1, 0, 1):
node = child[a]
SEF = 'SEF' in node
if child[b]['value'] == -1:
node = {'nt':'~', 't':'integer', 'ch':[node]}
if SEF: node['SEF'] = True
elif child[b]['value'] == 1:
node = {'nt':'NEG', 't':'integer', 'ch':[node]}
if SEF: node['SEF'] = True
node = {'nt':'~', 't':'integer', 'ch':[node]}
if SEF: node['SEF'] = True
node = parent[index] = {'nt':'!', 't':'integer',
'ch':[node]}
if SEF: node['SEF'] = True
del child
self.FoldTree(parent, index)
return
if self.CompareTrees(child[0], child[1]):
# expr == expr -> 1
parent[index] = {'nt':'CONST', 't':'integer', 'value':1,
'SEF':True}
return
return
if nt in ('<=', '>=') or nt == '!=' and child[0]['t'] != 'list':
# Except for list != list, all these comparisons are compiled
# as !(a>b) etc. so we transform them here in order to reduce
# the number of cases to check.
# a<=b --> !(a>b); a>=b --> !(a<b); a!=b --> !(a==b)
node['nt'] = {'<=':'>', '>=':'<', '!=':'=='}[nt]
parent[index] = {'nt':'!', 't':node['t'], 'ch':[node]}
self.FoldTree(parent, index)
return
if nt == '>' and ('SEF' in child[0] and 'SEF' in child[1]
or child[0]['nt'] == 'CONST' or child[1]['nt'] == 'CONST'
):
# Invert the inequalities to avoid doubling the cases to check.
# a>b -> b<a
nt = node['nt'] = '<'
child[1], child[0] = child[0], child[1]
# fall through to check for '<'
if nt == '<':
# expr < expr -> 0
if self.CompareTrees(child[0], child[1]):
parent[index] = {'nt':'CONST', 't':'integer', 'value':0,
'SEF':True}
return
if child[0]['t'] == child[1]['t'] in ('integer', 'float'):
if (child[0]['nt'] == 'CONST'
and child[1]['nt'] == 'FNCALL'
and self.FnSEF(child[1])
):
# CONST < FNCALL aka FNCALL > CONST
# when FNCALL.max <= CONST: always false
# when CONST < FNCALL.min: always true
if ('max' in self.symtab[0][child[1]['name']]
and not lslfuncs.less(child[0]['value'],
self.symtab[0][child[1]['name']]['max'])
):
parent[index] = {'nt':'CONST', 't':'integer',
'SEF':True, 'value':0}
return
if ('min' in self.symtab[0][child[1]['name']]
and lslfuncs.less(child[0]['value'],
self.symtab[0][child[1]['name']]['min'])
):
parent[index] = {'nt':'CONST', 't':'integer',
'SEF':True, 'value':1}
return
if (child[1]['nt'] == 'CONST'
and child[0]['nt'] == 'FNCALL'
and self.FnSEF(child[0])
):
# FNCALL < CONST
# when CONST > FNCALL.max: always true
# when CONST <= FNCALL.min: always false
if ('max' in self.symtab[0][child[0]['name']]
and lslfuncs.less(
self.symtab[0][child[0]['name']]['max']
, child[1]['value'])
):
parent[index] = {'nt':'CONST', 't':'integer',
'SEF':True, 'value':1}
return
if ('min' in self.symtab[0][child[0]['name']]
and not lslfuncs.less(
self.symtab[0][child[0]['name']]['min'],
child[1]['value'])
):
parent[index] = {'nt':'CONST', 't':'integer',
'SEF':True, 'value':0}
return
# Convert 2147483647<i and i<-2147483648 to i&0
if child[0]['t'] == child[1]['t'] == 'integer' \
and (child[0]['nt'] == 'CONST' and child[0]['value'] == 2147483647
or child[1]['nt'] == 'CONST' and child[1]['value'] == int(-2147483648)):
a, b = 0, 1
# Put the constant in child[b]
if child[a]['nt'] == 'CONST':
a, b = b, a
nt = node['nt'] = '&'
child[b]['value'] = 0
# fall through to check for '&'
else:
return
if nt in ('&', '|'):
# expr & expr -> expr
# expr | expr -> expr
if self.CompareTrees(child[0], child[1]):
parent[index] = child[0]
return
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b]
if child[b]['nt'] != 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST':
val = child[b]['value']
if nt == '|' and val == 0 or nt == '&' and (val == -1 or val == 1 and self.IsBool(child[a])):
# a|0 -> a
# a&-1 -> a
# a&1 -> a if a is boolean
parent[index] = child[a]
return
if nt == '|' and (val == -1 or val == 1 and self.IsBool(child[a])) or nt == '&' and val == 0:
# a|-1 -> -1 if a is SEF
# a|1 -> 1 if a is bool and SEF
# a&0 -> 0 if a is SEF
if 'SEF' in child[a]:
parent[index] = child[b]
# Apply boolean distributivity
applied = False
opposite = '&' if nt == '|' else '|'
if child[0]['nt'] == child[1]['nt'] == opposite:
left = child[0]['ch']
right = child[1]['ch']
for c, d in ((0, 0), (0, 1), (1, 0), (1, 1)):
if self.CompareTrees(left[c], right[d]):
child[1]['nt'] = nt
nt = node['nt'] = opposite
opposite = child[1]['nt']
right[d] = left[1 - c]
child[0] = left[c]
applied = True
break
# Apply absorption, possibly after distributivity
if child[0]['nt'] == opposite or child[1]['nt'] == opposite:
c = 0 if child[1]['nt'] == opposite else 1
for d in (0, 1):
if (self.CompareTrees(child[c], child[1 - c]['ch'][d])
and 'SEF' in child[1 - c]['ch'][1 - d]
):
node = parent[index] = child[c]
nt = node['nt']
child = node['ch'] if 'ch' in node else None
applied = True
break
if applied:
# Re-fold
self.FoldTree(parent, index)
return
if nt == '^':
# expr ^ expr -> 0
if self.CompareTrees(child[0], child[1]):
parent[index] = {'nt':'CONST', 't':'integer', 'value':0,
'SEF':True}
return
a, b = 0, 1
if child[a]['nt'] == 'CONST':
a, b = 1, 0
if child[b]['nt'] == 'CONST' and child[b]['value'] in (0, -1):
if child[b]['value'] == 0:
parent[index] = child[a]
else:
node['nt'] = '~'
node['ch'] = [child[a]]
return
if nt == '&&' or nt == '||':
SEF = 'SEF' in node
if nt == '||':
parent[index] = node = {'nt':'!', 't':'integer', 'ch':[
{'nt':'!', 't':'integer', 'ch':[
{'nt':'|', 't':'integer', 'ch':[child[0], child[1]]}
]}]}
if SEF:
# propagate SEF to the two ! and the OR
node['SEF'] = node['ch'][0]['SEF'] = True
node['ch'][0]['ch'][0]['SEF'] = True
else:
orchildren = [
{'nt':'!', 't':'integer', 'ch':[child[0]]}
,
{'nt':'!', 't':'integer', 'ch':[child[1]]}
]
parent[index] = node = {'nt':'!', 't':'integer', 'ch':[
{'nt':'|', 't':'integer', 'ch':orchildren}]}
if SEF:
# propagate SEF to the the OR and parent !
node['SEF'] = node['ch'][0]['SEF'] = True
# propagate SEF to the ! that are children of the OR
if 'SEF' in orchildren[0]['ch'][0]:
orchildren[0]['SEF'] = True
if 'SEF' in orchildren[1]['ch'][0]:
orchildren[1]['SEF'] = True
# Make another pass with the substitution
self.FoldTree(parent, index)
return
return
if nt in self.assign_ops:
# Transform the whole thing into a regular assignment, as there are
# no gains and it simplifies the optimization.
# An assignment has no side effects only if it's of the form x = x.
if nt != '=':
# Replace the node with the expression alone
# e.g. a += b -> a + b
node['nt'] = nt[:-1]
# Linden Craziness: int *= float; is valid (but no other
# int op= float is). It's actually performed as
# i = (integer)(i + (f));
# This breaks equivalence of x op= y as x = x op (y) so we add
# the explicit type cast here.
if nt == '*=' and child[0]['t'] == 'integer' and child[1]['t'] == 'float':
node['t'] = 'float' # Addition shall return float.
node = self.Cast(node, 'integer')
# And wrap it in an assignment.
child = [child[0].copy(), node]
node = parent[index] = {'nt':'=', 't':child[0]['t'], 'ch':child}
# We have a regular assignment either way now. Simplify the RHS.
self.FoldTree(node['ch'], 1)
chkequal = child[1]['ch'][0] if child[1]['nt'] == '=' else child[1]
if child[0]['nt'] == chkequal['nt'] == 'IDENT' \
and chkequal['name'] == child[0]['name'] \
and chkequal['scope'] == child[0]['scope'] \
or child[0]['nt'] == chkequal['nt'] == 'FLD' \
and chkequal['ch'][0]['name'] == child[0]['ch'][0]['name'] \
and chkequal['ch'][0]['scope'] == child[0]['ch'][0]['scope'] \
and chkequal['fld'] == child[0]['fld']:
parent[index] = child[1]
return
if nt == 'IDENT' or nt == 'FLD':
node['SEF'] = True
if self.globalmode:
ident = child[0] if nt == 'FLD' else node
# Resolve constant values so they can be optimized
sym = self.symtab[ident['scope']][ident['name']]
defn = self.tree[sym['Loc']]
assert defn['name'] == ident['name']
# Assume we already were there
if 'ch' in defn:
val = defn['ch'][0]
if val['nt'] != 'CONST' or ident['t'] == 'key':
return
val = val.copy()
else:
val = {'nt':'CONST', 't':defn['t'],
'value':self.DefaultValues[defn['t']]}
if nt == 'FLD':
val = {'nt':'CONST', 't':'float',
'value':val['value']['xyzs'.index(node['fld'])]}
parent[index] = val
return
if nt == 'FNCALL':
name = node['name']
SEFargs = True
CONSTargs = True
for idx in xrange(len(child)-1, -1, -1):
self.FoldTree(child, idx)
# Function is not SEF if any argument is not SEF
if 'SEF' not in child[idx]:
SEFargs = False
# Function is not a constant if any argument is not a constant
if child[idx]['nt'] != 'CONST':
CONSTargs = False
sym = self.symtab[0][name]
OptimizeArgs(node, sym)
try:
if 'Fn' in sym and (self.FnSEF(node) or lslcommon.IsCalc):
# It's side-effect free if the children are and the function
# is marked as SEF.
if SEFargs:
node['SEF'] = True
if CONSTargs:
# Call it
fn = sym['Fn']
args = [arg['value'] for arg in child]
assert len(args) == len(sym['ParamTypes'])
try:
# May raise ELSLCantCompute
if 'detect' in self.symtab[0][name]:
value = fn(*args,
evsym=None if self.CurEvent is None
else self.events[self.CurEvent])
else:
value = fn(*args)
finally:
del args
if not self.foldtabs:
generatesTabs = (
isinstance(value, unicode) and '\t' in value
or type(value) == list
and any(isinstance(x, unicode)
and '\t' in x for x in value)
)
if generatesTabs:
if self.warntabs:
warning(u"Can't optimize call to %s"
u" because it would generate a tab"
u" character (you can force the "
u" optimization with the 'foldtabs'"
u" option, or disable this warning by"
u" disabling the 'warntabs' option)."
% name.decode('utf8'))
raise lslfuncs.ELSLCantCompute()
# Replace with a constant
parent[index] = {'nt':'CONST', 't':node['t'],
'value':value, 'SEF':True}
return
elif SEFargs and 'SEF' in self.symtab[0][name]:
# The function is marked as SEF in the symbol table, and the
# arguments are all side-effect-free. The result is SEF.
node['SEF'] = True
except lslfuncs.ELSLCantCompute:
# Don't transform the tree if function is not computable
pass
# At this point, we have resolved whether the function is SEF,
# or whether the function resolves to a constant.
OptimizeFunc(self, parent, index)
return
if nt == 'PRINT':
self.FoldTree(child, 0)
# PRINT is considered to have side effects. If it's there, assume
# there's a reason.
return
if nt == 'EXPR':
self.FoldTree(child, 0)
if 'SEF' in child[0]:
node['SEF'] = True
return
if nt == 'FNDEF':
# CurEvent is needed when folding llDetected* function calls
if 'scope' in node:
# function definition
self.CurEvent = None
else:
# event definition
self.CurEvent = node['name']
self.FoldTree(child, 0)
# Test if the event is empty and SEF, and remove it if so.
if ('scope' not in node and not self.DoesSomething(child[0],
labels = False) and 'SEF' in self.events[node['name']]
):
# Delete ourselves.
del parent[index]
return
# TODO: This works, but analysis of code paths is DCR's thing
# and this is incomplete, e.g. x(){{return;}} is not detected.
while 'ch' in child[0] and child[0]['ch']:
last = child[0]['ch'][-1]
if last['nt'] != 'RETURN' or 'ch' in last:
break
del child[0]['ch'][-1]
if 'SEF' in child[0]:
node['SEF'] = True
if node['name'] in self.symtab[0]:
# Mark the symbol table entry if it's not an event.
self.symtab[0][node['name']]['SEF'] = True
return
if nt in ('VECTOR', 'ROTATION', 'LIST'):
isconst = True
issef = True
for idx in xrange(len(child)):
self.FoldTree(child, idx)
if child[idx]['nt'] != 'CONST':
isconst = False
if 'SEF' not in child[idx]:
issef = False
if isconst:
value = [x['value'] for x in child]
if nt == 'VECTOR':
value = Vector([lslfuncs.ff(x) for x in value])
elif nt == 'ROTATION':
value = Quaternion([lslfuncs.ff(x) for x in value])
parent[index] = {'nt':'CONST', 'SEF':True, 't':node['t'],
'value':value}
return
if issef:
node['SEF'] = True
return
if nt == 'STDEF':
for idx in xrange(len(child) - 1, -1, -1):
self.FoldTree(child, idx)
if not child:
# All events removed - add a dummy timer()
child.append({'nt':'FNDEF', 't':None, 'name':'timer',
'pscope':0, 'ptypes':[], 'pnames':[],
'ch':[{'nt':'{}', 't':None, 'ch':[]}]
})
return
if nt == '{}':
idx = 0
issef = True
while idx < len(child):
self.FoldTree(child, idx)
self.FoldStmt(child, idx)
if 'SEF' not in child[idx]:
issef = False
if child[idx]['nt'] == ';' \
or child[idx]['nt'] == '{}' and not child[idx]['ch']:
del child[idx]
else:
idx += 1
if issef:
node['SEF'] = True
return
if nt == 'IF':
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if child[0]['nt'] == 'CONST':
# We might be able to remove one of the branches.
if lslfuncs.cond(child[0]['value']):
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
if len(child) == 3 and child[2]['nt'] == '@':
# Corner case. The label is in the same scope as
# this statement, so it must be preserved just in
# case it's jumped to.
return
parent[index] = child[1]
return
elif len(child) == 3:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
if child[1]['nt'] == '@':
# Corner case. The label is in the same scope as this
# statement, so it must be preserved just in case it's
# jumped to.
if not self.DoesSomething(child[2]):
del child[2]
return
parent[index] = child[2]
return
else:
# No ELSE branch, replace the statement with an empty one.
if child[1]['nt'] == '@':
# Corner case. The label is in the same scope as this
# statement, so it must be preserved just in case it's
# jumped to.
parent[index] = child[1]
return
parent[index] = {'nt':';', 't':None, 'SEF':True}
return
else:
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
if len(child) > 2:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
# Check if it makes sense to swap if and else branches
# (but don't if the else branch is an elseless 'if'
# with a label, as it will be wrapped in {} making it
# become out of scope)
if (self.DoesSomething(child[2])
and (child[2]['nt'] != 'IF'
or len(child[2]['ch']) == 3
or child[2]['ch'][1]['nt'] != '@')
):
# Check if we can gain something by negating the
# expression.
# Swap 'if' and 'else' branch when the condition has
# a '!' prefix
if child[0]['nt'] == '!':
child[0] = child[0]['ch'][0]
child[1], child[2] = child[2], child[1]
# Swap them if condition is '==' with integer operands
if (child[0]['nt'] == '=='
and child[0]['ch'][0]['t']
== child[0]['ch'][1]['t'] == 'integer'
):
child[0]['nt'] = '^'
child[1], child[2] = child[2], child[1]
# Re-test just in case we swapped in the previous check.
if (not self.DoesSomething(child[2])
and child[1]['nt'] != '@'):
# no point in "... else ;" - remove else branch
del child[2]
if not self.DoesSomething(child[1]):
# if (X) ; -> X;
if len(child) == 2:
parent[index] = {'nt':'EXPR', 't':child[0]['t'],
'ch':[child[0]]}
# It has been promoted to statement. Fold it as such.
# (Will remove it if SEF)
self.FoldStmt(parent, index)
return
# If type(X) != Key, then:
# if (X) ; else {stuff} -> if (!X) {stuff}
# (being careful with labels again)
if (child[0]['t'] != 'key'
and (child[2]['nt'] != 'IF'
or len(child[2]['ch']) == 3
or child[2]['ch'][1]['nt'] != '@')
):
# We've already converted all other types to equivalent
# comparisons
assert child[0]['t'] == 'integer'
child[0] = {'nt':'!', 't':'integer', 'ch':[child[0]]}
del child[1]
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if all('SEF' in subnode for subnode in child):
node['SEF'] = True
return
if nt == 'WHILE':
# Loops are not considered side-effect free. If the expression is
# TRUE, it's definitely not SEF. If it's FALSE, it will be optimized
# out anyway. Otherwise we just don't know if it may be infinite,
# even if every component is SEF.
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldCond(child, 0)
if child[0]['nt'] == 'CONST':
# See if the whole WHILE can be eliminated.
if lslfuncs.cond(child[0]['value']):
# Endless loop which must be kept.
# Recurse on the statement.
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
else:
if child[1]['nt'] == '@':
# Corner case. The label is in the same scope as this
# statement, so it must be preserved just in case it's
# jumped to.
parent[index] = child[1]
else:
# Whole statement can be removed.
parent[index] = {'nt':';', 't':None, 'SEF':True}
return
else:
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
return
if nt == 'DO':
self.FoldTree(child, 0) # This one is always executed.
self.FoldStmt(child, 0)
self.ExpandCondition(child, 1)
self.FoldTree(child, 1)
self.FoldCond(child, 1)
# See if the latest part is a constant.
if child[1]['nt'] == 'CONST':
if not lslfuncs.cond(child[1]['value']):
# Only one go. Replace with the statement(s).
parent[index] = child[0]
return
if nt == 'FOR':
assert child[0]['nt'] == 'EXPRLIST'
assert child[2]['nt'] == 'EXPRLIST'
self.FoldAndRemoveEmptyStmts(child[0]['ch'])
self.ExpandCondition(child, 1) # Condition.
self.FoldTree(child, 1)
self.FoldCond(child, 1)
if child[1]['nt'] == 'CONST':
# FOR is delicate. It can have multiple expressions at start.
# And if there is more than one, these expressions will need a
# new block, which means new scope, which is dangerous.
# They are expressions, no declarations or labels allowed, thus
# no new identifiers may be created in the new scope, but it
# still feels dodgy.
if lslfuncs.cond(child[1]['value']):
# Endless loop. Traverse the loop and the iterator.
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
else:
# Convert expression list to code block.
exprlist = []
for expr in child[0]['ch']:
# Fold into expression statements.
exprlist.append({'nt':'EXPR', 't':expr['t'], 'ch':[expr]})
if (exprlist or child[2]['ch']) and child[3]['nt'] == '@':
# Corner case. We can't optimize this to one single
# statement, so we leave it as-is.
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
return
# returns type None, as FOR does
if exprlist:
# We're in the case where there are expressions. If any
# remain, they are not SEF (or they would have been
# removed earlier) so don't mark this node as SEF.
parent[index] = {'nt':'{}', 't':None, 'ch':exprlist}
else:
if child[3]['nt'] == '@':
# Corner case. The label is in the same scope as
# this statement, so it must be preserved. Also,
# jumping inside the loop would execute the
# iterator, so we fold it.
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
if not child[2]['ch']:
# if there's something in the 2nd list,
# preserve the whole statement, otherwise
# replace it with the label
parent[index] = child[3]
else:
parent[index] = {'nt':';', 't':None, 'SEF': True}
return
else:
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2]['ch'])
return
if nt == 'RETURN':
if child:
self.FoldTree(child, 0)
return
if nt == 'DECL':
if child:
# Check if child is a simple_expr. If it is, then we keep the
# original attached to the folded node to use it in the output.
if child[0].pop('Simple', False):
orig = self.CopyNode(child[0])
self.FoldTree(child, 0)
child[0]['orig'] = orig
else:
self.FoldTree(child, 0)
# Remove assignment if integer zero.
if node['t'] == 'integer' and child[0]['nt'] == 'CONST' \
and not child[0]['value']:
del node['ch']
return
else:
# Add assignment if vector, rotation or float.
if node['t'] in ('float', 'vector', 'rotation'):
typ = node['t']
node['ch'] = [{'nt':'CONST', 't':typ, 'SEF': True,
'value': 0.0 if typ == 'float' else
ZERO_VECTOR if typ == 'vector' else
ZERO_ROTATION}]
# Declarations always have side effects.
return
if nt == 'STSW':
# State switch always has side effects.
return
if nt == 'SUBIDX':
# Recurse to every child. It's SEF if all children are.
idx = 0
issef = True
while idx < len(child):
self.FoldTree(child, idx)
if 'SEF' not in child[idx]:
issef = False
idx += 1
if issef:
node['SEF'] = True
return
if nt == ';':
node['SEF'] = True
return
if nt in ('JUMP', '@', 'V++', 'V--', '--V', '++V', 'LAMBDA'):
# Except LAMBDA, these all have side effects, as in, can't be
# eliminated as statements.
# LAMBDA can't be eliminated without scrolling Loc's.
return
assert False, 'Internal error: This should not happen, node type = ' \
+ nt # pragma: no cover
def IsValidGlobalIdOrConst(self, node):
# nan can't be represented as a simple constant; all others are valid
return not (node['nt'] == 'CONST' and node['t'] == 'float'
and math.isnan(node['value']))
def IsValidGlobalConstant(self, decl):
if 'ch' not in decl:
return True
expr = decl['ch'][0]
if expr['nt'] in ('CONST', 'IDENT'):
return self.IsValidGlobalIdOrConst(expr)
if expr['nt'] not in ('VECTOR', 'ROTATION', 'LIST'):
return False
return all(elem['nt'] in ('CONST', 'IDENT')
and self.IsValidGlobalIdOrConst(elem)
for elem in expr['ch'])
def FoldScript(self, warningpass = True):
"""Optimize the symbolic table symtab in place. Requires a table of
predefined functions for folding constants.
"""
self.globalmode = False
tree = self.tree
self.CurEvent = None
FuncOptSetup()
# Constant folding pass. It does some other optimizations along the way.
for idx in xrange(len(tree)):
if tree[idx]['nt'] == 'DECL':
self.globalmode = True
self.FoldTree(tree, idx)
self.globalmode = False
if warningpass and not self.IsValidGlobalConstant(tree[idx]):
warning(u"Expression in globals doesn't resolve to a simple constant.")
else:
self.FoldTree(tree, idx)