mirror of
https://github.com/Sei-Lisa/LSL-PyOptimizer
synced 2025-07-01 23:58:20 +00:00
Still WIP, though, but it already optimizes e.g. this: default { timer() { 2+2; } } to this: default { timer() { 4; } }
127 lines
4.3 KiB
Python
127 lines
4.3 KiB
Python
|
|
import lslfuncs
|
|
from lslparse import S
|
|
import math
|
|
|
|
CONSTANT = S['CONSTANT']
|
|
|
|
class optimizer(object):
|
|
|
|
# explicitly exclude assignments
|
|
binary_ops = frozenset(('+','-','*','/','%','<<','>>','<','<=','>','>=',
|
|
'==','!=','|','^','&','||','&&'))
|
|
|
|
def FoldTree(self, code):
|
|
"""Recursively traverse the tree to fold constants, changing the tree
|
|
in place.
|
|
"""
|
|
while code[0] == 'EXPR':
|
|
code[:] = code[2]
|
|
|
|
if code[0] == 'CAST':
|
|
self.FoldTree(code[2])
|
|
if code[2][0] == CONSTANT:
|
|
if code[1] != 'key': # key constants not possible
|
|
code[:] = [CONSTANT, code[1], lslfuncs.typecast(code[2][2])]
|
|
return
|
|
|
|
if code[0] == '-':
|
|
self.FoldTree(code[3])
|
|
if code[3][1] in ('integer', 'float'): # no gain otherwise
|
|
if code[3][0] == CONSTANT:
|
|
code[3][2] = -code[3][2]
|
|
else:
|
|
code[:] = ['+', code[1], code[2], [S['NEG'], code[3][1], code[3]]]
|
|
self.FoldTree(code[2])
|
|
else:
|
|
self.FoldTree(code[2])
|
|
if code[2][0] == code[3][0] == CONSTANT:
|
|
code[:] = ['-', code[1], lslfuncs.sub(code[2][2], code[3][2])]
|
|
# Fall through to optimize it right away as addition
|
|
|
|
if code[0] in self.binary_ops:
|
|
# RTL evaluation
|
|
self.FoldTree(code[3])
|
|
self.FoldTree(code[2])
|
|
if code[2][0] == code[3][0] == CONSTANT:
|
|
code[:] = [CONSTANT, code[1], lslfuncs.add(code[2][2], code[3][2])]
|
|
return
|
|
|
|
if self.globalmode:
|
|
if code[0] == 'IDENT':
|
|
if code[1] != 'key' and self.symtab[code[2]][2] is not None:
|
|
code[:] = [CONSTANT, code[1], self.symtab[code[2]][2]]
|
|
return
|
|
|
|
if code[0] == 'FUNCTION':
|
|
for x in code[3][::-1]:
|
|
self.FoldTree(x)
|
|
if code[2] in self.functions:
|
|
for x in code[3]:
|
|
if x[0] != CONSTANT:
|
|
break
|
|
else:
|
|
if code[2] in self.functions:
|
|
# Call it
|
|
val = self.functions[code[2]](tuple(x[2] for x in code[3]))
|
|
code[:] = [CONSTANT, code[1], val]
|
|
return
|
|
|
|
if code[0] == 'PRINT':
|
|
# useless but who knows
|
|
self.FoldTree(code[2])
|
|
|
|
if code[0] == '{}':
|
|
for x in code[2:]:
|
|
self.FoldTree(x)
|
|
return
|
|
|
|
if code[0] in ('VECTOR', 'ROTATION', 'LIST'):
|
|
for x in code[:1:-1]:
|
|
self.FoldTree(x)
|
|
|
|
if code[0] == 'FIELD':
|
|
self.FoldTree(code[2])
|
|
assert code[2][0] in ('VECTOR', 'ROTATION')
|
|
idx = '--xyzs'.index(code[3])
|
|
if code[2][idx][0] == CONSTANT:
|
|
code[:] = [CONSTANT, 'float', code[2][idx][0]]
|
|
return
|
|
|
|
def Fold(self, code, IsGlobal = False):
|
|
assert type(code[2]) == tuple
|
|
tree = list(code[2])
|
|
self.globalmode = IsGlobal
|
|
self.FoldTree(tree)
|
|
# Mono optimization: (integer)-5 and (float)-3.0 is cheaper.
|
|
if not IsGlobal and tree[0] == 'CONSTANT':
|
|
if tree[1] == 'integer' and tree[2] < 0:
|
|
tree[:] = [S['CAST'], 'integer', tree]
|
|
elif tree[1] == 'float' and tree[2] < 0.0 and not math.isinf(tree[2]):
|
|
tree[:] = [S['CAST'], 'float', tree]
|
|
|
|
if type(code) == tuple:
|
|
code = list(code)
|
|
code[2] = tuple(tree)
|
|
code = tuple(code)
|
|
else:
|
|
assert False
|
|
code[2] = tuple(tree)
|
|
|
|
def optimize(self, symtab, functions):
|
|
"""Optimize the symbolic table symtab in place. Uses a table of
|
|
predefined functions for folding constants.
|
|
"""
|
|
self.functions = functions
|
|
self.symtab = symtab
|
|
|
|
# Fold constants etc.
|
|
for name in symtab[0]:
|
|
if name == -1:
|
|
continue
|
|
entry = symtab[0][name]
|
|
if entry[1] == 'State':
|
|
for event in entry[2]:
|
|
self.Fold(entry[2][event])
|
|
elif type(entry[2]) == tuple:
|
|
self.Fold(entry, IsGlobal = True) # global
|