mirror of
https://github.com/mozilla/cubeb
synced 2024-11-21 14:29:11 -07:00
07c352c65a
Following https://github.com/mozilla/cubeb/issues/658#issuecomment-955998734, the speex library is now handled like a normal dependency: cubeb will link against the system version if available, and fall back to the bundled one if not. I've also added a BUNDLE_SPEEX option, so that you can force the use of the bundled library if needed (e.g. creating a standalone libcubeb on a system where libspeex is available). I also had to move the bundled library to a separate folder. As `src` is always added as an include path, the headers in `src/speex` would conflict with system headers. And it also clears the relationship between cubeb and speex. I choose the "subprojects" name to follow the Meson convention, since CMake does not have one. A bit OT, but if you're curious you can see their rationale here: https://mesonbuild.com/Subprojects.html#why-must-all-subprojects-be-inside-a-single-directory Lastly, I added cubeb_log.cpp to the list of sources of test_resampler, as I was getting linking errors when building with BUILD_SHARED_LIBS=true Fixes #658
128 lines
4.5 KiB
C
128 lines
4.5 KiB
C
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
|
* Copyright (C) 2008 Thorvald Natvig
|
|
*/
|
|
/**
|
|
@file resample_sse.h
|
|
@brief Resampler functions (SSE version)
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
#define OVERRIDE_INNER_PRODUCT_SINGLE
|
|
static inline float inner_product_single(const float *a, const float *b, unsigned int len)
|
|
{
|
|
int i;
|
|
float ret;
|
|
__m128 sum = _mm_setzero_ps();
|
|
for (i=0;i<len;i+=8)
|
|
{
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i)));
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4)));
|
|
}
|
|
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
|
|
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
|
|
_mm_store_ss(&ret, sum);
|
|
return ret;
|
|
}
|
|
|
|
#define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
|
|
static inline float interpolate_product_single(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
|
|
int i;
|
|
float ret;
|
|
__m128 sum = _mm_setzero_ps();
|
|
__m128 f = _mm_loadu_ps(frac);
|
|
for(i=0;i<len;i+=2)
|
|
{
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample)));
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample)));
|
|
}
|
|
sum = _mm_mul_ps(f, sum);
|
|
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
|
|
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
|
|
_mm_store_ss(&ret, sum);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef _USE_SSE2
|
|
#include <emmintrin.h>
|
|
#define OVERRIDE_INNER_PRODUCT_DOUBLE
|
|
|
|
static inline double inner_product_double(const float *a, const float *b, unsigned int len)
|
|
{
|
|
int i;
|
|
double ret;
|
|
__m128d sum = _mm_setzero_pd();
|
|
__m128 t;
|
|
for (i=0;i<len;i+=8)
|
|
{
|
|
t = _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
|
|
t = _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
}
|
|
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
|
_mm_store_sd(&ret, sum);
|
|
return ret;
|
|
}
|
|
|
|
#define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
|
|
static inline double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
|
|
int i;
|
|
double ret;
|
|
__m128d sum;
|
|
__m128d sum1 = _mm_setzero_pd();
|
|
__m128d sum2 = _mm_setzero_pd();
|
|
__m128 f = _mm_loadu_ps(frac);
|
|
__m128d f1 = _mm_cvtps_pd(f);
|
|
__m128d f2 = _mm_cvtps_pd(_mm_movehl_ps(f,f));
|
|
__m128 t;
|
|
for(i=0;i<len;i+=2)
|
|
{
|
|
t = _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample));
|
|
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
|
|
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
|
|
t = _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample));
|
|
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
|
|
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
}
|
|
sum1 = _mm_mul_pd(f1, sum1);
|
|
sum2 = _mm_mul_pd(f2, sum2);
|
|
sum = _mm_add_pd(sum1, sum2);
|
|
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
|
_mm_store_sd(&ret, sum);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|