cubeb/subprojects/speex/resample_sse.h
Andrea Pappacoda 07c352c65a build: use system speex when possible
Following
https://github.com/mozilla/cubeb/issues/658#issuecomment-955998734, the
speex library is now handled like a normal dependency: cubeb will link
against the system version if available, and fall back to the bundled
one if not.

I've also added a BUNDLE_SPEEX option, so that you can force the use of
the bundled library if needed (e.g. creating a standalone libcubeb on a
system where libspeex is available).

I also had to move the bundled library to a separate folder. As `src` is
always added as an include path, the headers in `src/speex` would
conflict with system headers. And it also clears the relationship
between cubeb and speex. I choose the "subprojects" name to follow the
Meson convention, since CMake does not have one. A bit OT, but if you're
curious you can see their rationale here:
https://mesonbuild.com/Subprojects.html#why-must-all-subprojects-be-inside-a-single-directory

Lastly, I added cubeb_log.cpp to the list of sources of test_resampler,
as I was getting linking errors when building with BUILD_SHARED_LIBS=true

Fixes #658
2021-11-09 09:38:18 +13:00

128 lines
4.5 KiB
C

/* Copyright (C) 2007-2008 Jean-Marc Valin
* Copyright (C) 2008 Thorvald Natvig
*/
/**
@file resample_sse.h
@brief Resampler functions (SSE version)
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <xmmintrin.h>
#define OVERRIDE_INNER_PRODUCT_SINGLE
static inline float inner_product_single(const float *a, const float *b, unsigned int len)
{
int i;
float ret;
__m128 sum = _mm_setzero_ps();
for (i=0;i<len;i+=8)
{
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i)));
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4)));
}
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
_mm_store_ss(&ret, sum);
return ret;
}
#define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
static inline float interpolate_product_single(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
int i;
float ret;
__m128 sum = _mm_setzero_ps();
__m128 f = _mm_loadu_ps(frac);
for(i=0;i<len;i+=2)
{
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample)));
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample)));
}
sum = _mm_mul_ps(f, sum);
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
_mm_store_ss(&ret, sum);
return ret;
}
#ifdef _USE_SSE2
#include <emmintrin.h>
#define OVERRIDE_INNER_PRODUCT_DOUBLE
static inline double inner_product_double(const float *a, const float *b, unsigned int len)
{
int i;
double ret;
__m128d sum = _mm_setzero_pd();
__m128 t;
for (i=0;i<len;i+=8)
{
t = _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i));
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
t = _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4));
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
}
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
_mm_store_sd(&ret, sum);
return ret;
}
#define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
static inline double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
int i;
double ret;
__m128d sum;
__m128d sum1 = _mm_setzero_pd();
__m128d sum2 = _mm_setzero_pd();
__m128 f = _mm_loadu_ps(frac);
__m128d f1 = _mm_cvtps_pd(f);
__m128d f2 = _mm_cvtps_pd(_mm_movehl_ps(f,f));
__m128 t;
for(i=0;i<len;i+=2)
{
t = _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample));
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
t = _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample));
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
}
sum1 = _mm_mul_pd(f1, sum1);
sum2 = _mm_mul_pd(f2, sum2);
sum = _mm_add_pd(sum1, sum2);
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
_mm_store_sd(&ret, sum);
return ret;
}
#endif