LSL-PyOptimizer/lslopt/lslfoldconst.py
Sei Lisa c1c1b8c58d Further generalize the < operator
Use the node's min and max for both sides. Constants are just a special case where min = max = value.
2024-05-11 18:32:27 +02:00

2023 lines
86 KiB
Python

# (C) Copyright 2015-2024 Sei Lisa. All rights reserved.
#
# This file is part of LSL PyOptimizer.
#
# LSL PyOptimizer is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# LSL PyOptimizer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with LSL PyOptimizer. If not, see <http://www.gnu.org/licenses/>.
# Constant folding and simplification of expressions and statements.
from lslopt import lslcommon
from lslopt.lslcommon import Vector, Quaternion, warning, nr
from lslopt import lslfuncs
from lslopt.lslfuncs import ZERO_VECTOR, ZERO_ROTATION
import math
from lslopt.lslfuncopt import OptimizeFunc, OptimizeArgs, FuncOptSetup
from strutil import xrange, unicode
# TODO: Remove special handling of @ within IF,WHILE,FOR,DO
class foldconst(object):
def getMin(self, node):
assert node.t in ('integer', 'float')
if node.nt == 'CONST':
return node.value
return getattr(node, 'min', None)
def getMax(self, node):
assert node.t in ('integer', 'float')
if node.nt == 'CONST':
return node.value
return getattr(node, 'max', None)
def isLocalVar(self, node):
name = node.name
scope = node.scope
return (self.symtab[scope][name]['Kind'] == 'v'
and 'Loc' not in self.symtab[scope][name])
def GetListNodeLength(self, node):
"""Get the length of a list that is expressed as a CONST, LIST or CAST
node, or False if it can't be determined.
"""
assert node.t == 'list'
nt = node.nt
if nt == 'CAST':
if node.ch[0].t == 'list':
return self.GetListNodeLength(node.ch[0])
return 1
if nt == 'CONST': # constant list
return len(node.value)
if nt == 'LIST': # list constructor
return len(node.ch)
return False
def GetListNodeElement(self, node, index):
"""Get an element of a list expressed as a CONST, LIST or CAST node.
If the index is out of range, return False; otherwise the result can be
either a node or a constant.
"""
assert node.t == 'list'
nt = node.nt
if nt == 'CAST':
# (list)list_expr should have been handled in CAST
assert node.ch[0].t != 'list'
if index == 0 or index == -1:
return node.ch[0]
return False
if nt == 'CONST':
try:
return node.value[index]
except IndexError:
pass
return False
if nt == 'LIST':
try:
return node.ch[index]
except IndexError:
return False
return False
def ConstFromNodeOrConst(self, nodeOrConst):
"""Return the constant if the value is a node and represents a constant,
or if the value is directly a constant, and False otherwise.
"""
if type(nodeOrConst) == nr:
if nodeOrConst.nt == 'CONST':
return nodeOrConst.value
return False
return nodeOrConst
def TypeFromNodeOrConst(self, nodeOrConst):
"""Return the LSL type of a node or constant."""
if nodeOrConst is False:
return False
if type(nodeOrConst) == nr:
return nodeOrConst.t
return lslcommon.PythonType2LSL[type(nodeOrConst)]
def FoldAndRemoveEmptyStmts(self, lst):
"""Utility function for elimination of useless expressions in FOR"""
idx = 0
while idx < len(lst):
self.FoldTree(lst, idx)
self.FoldStmt(lst, idx)
# If eliminated, it must be totally removed. A ';' won't do.
if lst[idx].nt == ';':
del lst[idx]
else:
idx += 1
def CompareTrees(self, node1, node2):
"""Try to compare two subtrees to see if they are equivalent.
Returns True if they are."""
# They MUST be SEF and stable.
if not node1.SEF or not node2.SEF:
return False
if node1.t != node2.t:
return False
# It's not complete yet.
nt1 = node1.nt
if nt1 == node2.nt:
if (nt1 == 'IDENT'
and node1.name == node2.name
and node1.scope == node2.scope
):
return True
if (nt1 == 'FNCALL'
and node1.name == node2.name
and 'uns' not in self.symtab[0][node1.name]
and all(self.CompareTrees(node1.ch[i],
node2.ch[i])
for i in xrange(len(node1.ch)))
):
return True
if (nt1 == 'CAST'
and self.CompareTrees(node1.ch[0], node2.ch[0])
):
return True
if nt1 == 'CONST' and node1.value == node2.value:
return True
if (nt1 in ('!', '~', 'NEG')
and self.CompareTrees(node1.ch[0], node2.ch[0])
):
return True
if (nt1 in self.binary_ops
and self.CompareTrees(node1.ch[0], node2.ch[0])
and self.CompareTrees(node1.ch[1], node2.ch[1])
):
return True
if ((nt1 in ('*', '^', '&', '|', '==') # commutative
or nt1 == '+'
and node1.ch[0].t not in ('list', 'string')
and node2.ch[0].t not in ('list', 'string')
)
and self.CompareTrees(node1.ch[0], node2.ch[1])
and self.CompareTrees(node1.ch[1], node2.ch[0])
):
return True
return False
def FnSEF(self, node):
'''Applied to function call nodes, return whether the node corresponds
to a SEF function.
'''
assert node.nt == 'FNCALL'
sym = self.symtab[0][node.name]
return 'SEF' in sym and sym['SEF'] is True
def FoldStmt(self, parent, index):
"""Simplify a statement."""
node = parent[index]
# If the statement is side-effect-free, remove it as it does nothing.
if node.SEF:
# When a statement is side-effect free, it does nothing except
# wasting CPU, and can thus be removed without affecting the
# program. But side effect freedom is propagated from the
# constituents of the statement, e.g. function calls in expressions
# or substatements in FOR, or even individual variables.
#
# Many library functions like llSameGroup or llGetVel() are
# side-effect free. Many other functions like llSleep() or
# llSetScale() are not. User functions may or may not be.
#
# Assignments do have side effects, except those of the form x = x.
# Pre- and post-increment and decrement also have side effects.
# Other unary and binary operators are side effect-free.
parent[index] = nr(nt=';', t=None, SEF=True)
return
if node.nt == 'EXPR':
node = node.ch[0]
# Post-increments take more space than pre-increments.
if node.nt in ('V++', 'V--'):
node.nt = '++V' if node.nt == 'V++' else '--V';
# Function calls are SEF if both the function and the args are SEF.
# If the statement is a function call and the function is marked as SEF
# at this point, it means the arguments are not SEF. Replace the node
# in that case with a block of expressions.
if (node.nt == 'FNCALL' and 'Loc' in self.symtab[0][node.name]
and self.FnSEF(node)
):
scope = len(self.symtab)
self.symtab.append({})
parent[index] = nr(nt='{}', t=None, scope=scope, ch=[
nr(nt='EXPR', t=x.t, ch=[x]) for x in node.ch])
self.FoldTree(parent, index)
return
def ExpandCondition(self, parent, index):
"""IF, FOR, WHILE and DO...WHILE conditions accept several types, not
just integer. However, leaving them as-is generates longer code than if
we expand them and let the optimizer optimize, for float, vector and
rotation, and no matter the optimization in the case of list.
"""
ctyp = parent[index].t
# Under LSO, this would break the fact that 1-element lists count as
# false, so we don't do it for LSO lists.
if (ctyp in ('float', 'vector', 'rotation', 'string')
or ctyp == 'list' and not lslcommon.LSO
):
parent[index] = nr(nt='!=', t='integer', ch=[parent[index],
nr(nt='CONST', t=ctyp, value=0.0 if ctyp == 'float'
else ZERO_VECTOR if ctyp == 'vector'
else ZERO_ROTATION if ctyp == 'rotation'
else u"" if ctyp == 'string'
else [])])
parent[index].SEF = parent[index].ch[0].SEF
def IsBool(self, node):
"""Some operators return 0 or 1, and that allows simplification of
boolean expressions. This function returns whether we know for sure
that the result is boolean.
"""
nt = node.nt
if (nt in ('<', '!', '>', '<=', '>=', '==', '||', '&&')
or nt == '!=' and node.ch[0].t != 'list'
or nt == '&' and any(self.IsBool(node.ch[i]) for i in (0, 1))
or nt in ('|', '^', '*')
and all(self.IsBool(node.ch[i]) for i in (0, 1))
or nt == 'CONST' and node.t == 'integer' and node.value in (0, 1)
):
return True
if nt == 'FNCALL':
sym = self.symtab[0][node.name]
if (sym['Type'] == 'integer' and 'min' in sym and 'max' in sym
and sym['min'] >= 0 and sym['max'] <= 1
):
return True
return False
def IsAndBool(self, node):
"""For bitwise AND, in some cases we can relax the condition to this:
when bit 0 is 0, all other bits are guaranteed to be 0 as well. That's
the case of -bool, which is the only case we deal with here, but an
important one because we generate it as an intermediate result in some
operations.
"""
return (node.nt == 'NEG' and self.IsBool(node.ch[0])
or self.IsBool(node))
def GetTruth(self, node):
"""Decode truth value of node when possible.
Returns True if it's always true, False if it's always false, and None
if it can't be determined.
"""
if node.nt == 'CONST':
return lslfuncs.cond(node.value)
min = getattr(node, 'min', None)
max = getattr(node, 'max', None)
if min is None or max is None:
if node.nt == 'FNCALL':
min = self.symtab[0][node.name].get('min', min)
max = self.symtab[0][node.name].get('max', max)
if min is not None and min > 0:
return True
if max is not None and max < 0:
return True
if min == max == 0:
return False
return None
def FoldAsBool(self, parent, index, ParentIsNegation = False):
"""When we know that the parent is interested only in the truth value
of the node, we can perform further optimizations. This function deals
with them.
"""
node = parent[index]
nt = node.nt
truth = self.GetTruth(node)
if truth is not None and node.SEF:
parent[index] = nr(nt='CONST',t='integer',value=1 if truth else 0,
SEF=True)
return
if nt in ('IDENT', 'FLD'):
return # Nothing to do if it's already simplified.
child = node.ch
if nt == 'FNCALL' and 'strlen' in self.symtab[0][node.name]:
# llStringLength(expr) -> !(expr == "")
# new node is SEF if the argument to llStringLength is
node = nr(nt='==', t='integer', SEF=child[0].SEF,
ch=[child[0],
nr(nt='CONST', t='string', value=u'', SEF=True)
])
node = nr(nt='!', t='integer', ch=[node], SEF=child[0].SEF)
parent[index] = node
nt = '!'
child = node.ch
# fall through to keep optimizing if necessary
if nt == '!':
self.FoldAsBool(child, 0, True)
if child[0].nt == '!':
# bool(!!a) equals bool(a)
parent[index] = child[0].ch[0]
return
if (child[0].nt == '==' and child[0].ch[0].t == 'integer'
and child[0].ch[1].t == 'integer'
):
# We have !(int == int). Replace with int ^ int or with int - 1
node = parent[index] = child[0] # remove the negation
child = child[0].ch
if (child[0].nt == 'CONST' and child[0].value == 1
or child[1].nt == 'CONST' and child[1].value == 1
):
# a != 1 -> a - 1 (which FoldTree will transform to ~-a)
node.nt = '-'
else:
# This converts != to ^; FoldTree will simplify ^-1 to ~
# and optimize out ^0.
node.nt = '^'
self.FoldTree(parent, index)
return
if (child[0].nt == '&'
and any(child[0].ch[i].nt == '!'
and self.IsAndBool(child[0].ch[1-i]) for i in (0, 1))
):
# We can remove at least one !
child[0].nt = '|'
for i in (0, 1):
child[0].ch[i] = nr(nt='!', t='integer',
ch=[child[0].ch[i]], SEF=child[0].ch[i].SEF)
parent[index] = child[0]
self.FoldTree(parent, index)
self.FoldAsBool(parent, index)
return
if nt == 'NEG':
# bool(-a) equals bool(a)
parent[index] = child[0]
self.FoldAsBool(parent, index, ParentIsNegation)
return
if nt in self.binary_ops and child[0].t == child[1].t == 'integer':
if nt == '==':
if (child[0].nt == 'CONST' and -1 <= child[0].value <= 1
or child[1].nt == 'CONST' and -1 <= child[1].value <= 1
):
# Transform a==b into !(a-b) if either a or b are in [-1,1]
parent[index] = nr(nt='!', t='integer', ch=[node])
node.nt = '-'
self.FoldTree(parent, index)
return
if nt == '|':
# In a boolean context, the operands count as booleans.
self.FoldAsBool(child, 0)
self.FoldAsBool(child, 1)
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b] if present
if child[b].nt != 'CONST':
a, b = 1, 0
if child[b].nt == 'CONST' and child[b].value and child[a].SEF:
node = parent[index] = child[b]
node.value = -1
return
del a, b
# Specific optimization to catch a frequent bitwise test.
# If b and c are constant powers of two:
# !(a & b) | !(a & c) -> ~(a|~(b|c))
# e.g. if (a & 4 && a & 8) -> if (!~(a|-13))
if (child[0].nt == '!' and child[0].ch[0].nt == '&'
and child[1].nt == '!' and child[1].ch[0].nt == '&'
):
and1 = child[0].ch[0].ch
and2 = child[1].ch[0].ch
a, b, c, d = 0, 1, 0, 1
if and1[b].nt != 'CONST':
a, b = b, a
if and2[d].nt != 'CONST':
c, d = d, c
if and1[b].nt == and2[d].nt == 'CONST':
val1 = and1[b].value
val2 = and2[d].value
if (val1 and val2
# power of 2
and (val1 & (val1 - 1) & 0xFFFFFFFF) == 0
and (val2 & (val2 - 1) & 0xFFFFFFFF) == 0
and self.CompareTrees(and1[a], and2[c])
):
# Check passed
child[0] = and1[a]
child[1] = and1[b]
child[1].value = ~(val1 | val2)
parent[index] = nr(nt='~', t='integer', ch=[node],
SEF=node.SEF)
self.FoldAsBool(parent, index, ParentIsNegation)
return
del val1, val2
del a, b, c, d, and1, and2
# Absorb further flags, to allow chaining of &&
# If ~r and s are constants, and s is a power of two:
# (!~(x|~r) && x&s) -> !~(x|(~r&~s))
# This is implemented as:
# ~(x|~r) | !(x&s) -> ~(x|~(r|s))
# since that's the intermediate result after conversion of &&.
# a and b are going to be the children of the main |
# a is going to be child that has the ~
# b is the other child (with the !)
# c is the child of ~ which has x
# d is the child of ~ with the constant ~r
# e is the child of ! which has x
# f is the child of ! with the constant s
a, b = 0, 1
if child[a].nt != '~':
a, b = b, a
c, d = 0, 1
if child[a].nt == '~' and child[a].ch[0].nt == '|':
if child[a].ch[0].ch[d].nt != 'CONST':
c, d = d, c
e, f = 0, 1
if child[b].nt == '!' and child[b].ch[0].nt == '&':
if child[b].ch[0].ch[f].nt != 'CONST':
e, f = f, e
# All pointers are ready to check applicability.
if (child[a].nt == '~' and child[a].ch[0].nt == '|'
and child[b].nt == '!' and child[b].ch[0].nt == '&'
):
ch1 = child[a].ch[0].ch
ch2 = child[b].ch[0].ch
if (ch1[d].nt == 'CONST' and ch2[f].nt == 'CONST'
and (ch2[f].value & (ch2[f].value - 1)
& 0xFFFFFFFF) == 0
):
if self.CompareTrees(ch1[c], ch2[e]):
# We're in that case. Apply optimization.
parent[index] = child[a]
ch1[d].value &= ~ch2[f].value
return
del ch1, ch2
del a, b, c, d, e, f
# Check if the operands are a negation ('!') or can be inverted
# without adding more than 1 byte and are boolean.
# We only support '<' and some cases of '&' (are there more?)
Invertible = [False, False]
for a in (0, 1):
Invertible[a] = child[a].nt == '!'
if (child[a].nt == '<'
and child[a].ch[0].t == child[a].ch[1].t == 'integer'
):
if (child[a].ch[0].nt == 'CONST'
and child[a].ch[0].value != 2147483647
or child[a].ch[1].nt == 'CONST'
and child[a].ch[1].value != int(-2147483648)
):
Invertible[a] = True
# Deal with our optimization of a<0 -> a&0x80000000
# (see below)
if child[a].nt == '&' and (
child[a].ch[0].nt == 'CONST'
and child[a].ch[0].value == int(-2147483648)
or child[a].ch[1].nt == 'CONST'
and child[a].ch[1].value == int(-2147483648)
):
Invertible[a] |= ParentIsNegation
if (Invertible[0] or Invertible[1]) and ParentIsNegation:
# !(!a|b) -> a&-!b or a&!b
# This deals with the part after the first !, transforming
# it into (!a|!!b) so that the outer node can optimize the
# negated version to a simple &.
for a in (0, 1):
if not Invertible[a]:
child[a] = nr(nt='!', t='integer',
ch=[nr(nt='!', t='integer', ch=[child[a]])]
)
Invertible[a] = True
if Invertible[0] and Invertible[1]:
# Both operands are negated, or negable.
# Make them a negation if they aren't already.
for a in (0, 1):
if child[a].nt == '<':
if child[a].ch[0].nt == 'CONST':
child[a].ch[0].value += 1
else:
child[a].ch[1].value -= 1
child[a].ch[0], child[a].ch[1] = \
child[a].ch[1], child[a].ch[0]
child[a] = nr(nt='!', t='integer', ch=[child[a]])
elif child[a].nt == '&':
child[a] = nr(nt='!', t='integer',
ch=[nr(nt='!', t='integer', ch=[child[a]])]
)
self.FoldTree(child[a].ch, 0)
# If they are boolean, the expression can be turned into
# !(a&b) which hopefully will have a ! uptree if it came
# from a '&&' and cancel out (if not, we still remove one
# ! so it's good). If one is bool, another transformation
# can be performed: !nonbool|!bool -> !(nonbool&-bool)
# which is still a gain.
# Deal with operands in any order
a, b = 0, 1
# Put the bool in child[b].ch[0].
if not self.IsBool(child[b].ch[0]):
a, b = 1, 0
if self.IsBool(child[b].ch[0]):
if not self.IsAndBool(child[a].ch[0]):
child[b].ch[0] = nr(nt='NEG', t='integer',
ch=[child[b].ch[0]])
node = parent[index] = nr(nt='!', t='integer',
ch=[nr(nt='&', t='integer',
ch=[child[0].ch[0], child[1].ch[0]])
], SEF=child[0].ch[0].SEF and child[1].ch[0].SEF)
# Fold the node we've just synthesized
self.FoldTree(parent, index)
return
if nt == '<' and child[0].t == child[1].t == 'integer':
sym = None
for a in (0, 1):
if child[a].nt == 'FNCALL':
sym = self.symtab[0][child[a].name]
break
# cond(FNCALL < 0) -> cond(!~FNCALL) if min == -1
if (child[1].nt == 'CONST' and child[1].value == 0
and child[0].nt == 'FNCALL'
and 'min' in sym and sym['min'] == -1
):
node = parent[index] = nr(nt='!', t='integer',
ch=[nr(nt='~', t='integer', ch=[child[0]])])
self.FoldTree(parent, index)
return
# cond(FNCALL > -1) -> cond(~FNCALL) if min == -1
if (child[0].nt == 'CONST' and child[0].value == -1
and child[1].nt == 'FNCALL'
and 'min' in sym and sym['min'] == -1
):
node = parent[index] = nr(nt='~', t='integer',
ch=[child[1]])
self.FoldTree(parent, index)
return
# cond(FNCALL < 1) -> cond(!FNCALL) if min == 0
if (child[1].nt == 'CONST' and child[1].value == 1
and child[0].nt == 'FNCALL'
and 'min' in sym and sym['min'] == 0
):
node = parent[index] = nr(nt='!', t='integer',
ch=[child[0]])
self.FoldTree(parent, index)
return
# cond(FNCALL > 0) -> cond(FNCALL) if min == 0
if (child[0].nt == 'CONST' and child[0].value == 0
and child[1].nt == 'FNCALL'
and 'min' in sym and sym['min'] == 0
):
node = parent[index] = child[1]
self.FoldTree(parent, index)
return
if nt == '&':
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b], if present
if child[b].nt != 'CONST':
a, b = 1, 0
if (child[b].nt == 'CONST'
and child[b].value == int(-2147483648)
and child[a].nt == 'FNCALL'
):
sym = self.symtab[0][child[a].name]
if 'min' in sym and sym['min'] == -1:
node = parent[index] = nr(nt='~', t='integer',
ch=[child[a]])
self.FoldTree(parent, index)
return
def CopyNode(self, node):
'''Deep copy of a node'''
ret = node.copy()
if ret.ch:
ret.ch = [self.CopyNode(subnode) for subnode in ret.ch]
return ret
def FoldTree(self, parent, index):
"""Recursively traverse the tree to fold constants, changing it in
place.
Also optimizes away IF, WHILE, etc.
"""
node = parent[index]
nt = node.nt
child = node.ch
if nt == 'CONST':
# Job already done. But mark as side-effect free.
node.SEF = True
return
if nt == 'CAST':
self.FoldTree(child, 0)
node.SEF = child[0].SEF
if child[0].nt == 'CONST':
# Enable key constants. We'll typecast them back on output, but
# this enables some optimizations.
#if node.t != 'key': # key constants not possible
parent[index] = nr(nt='CONST', t=node.t, SEF=True,
value=lslfuncs.typecast(
child[0].value, lslcommon.LSLType2Python[node.t]))
# Remove casts of a type to the same type (NOP in Mono)
# This is not an optimization by itself, but it simplifies the job,
# by not needing to look into nested casts like (key)((key)...)
while node.nt == 'CAST' and child[0].t == node.t:
parent[index] = node = child[0]
if node.ch is None:
break
child = node.ch
return
if nt == 'NEG':
self.FoldTree(child, 0)
node.SEF = child[0].SEF
if child[0].nt == '+' and any(child[0].ch[i].nt == 'NEG'
for i in (0, 1)):
node = parent[index] = child[0]
child = node.ch
for a in (0, 1):
if child[a].nt == 'NEG':
child[a] = child[a].ch[0]
else:
child[a] = nr(nt='NEG', t=child[a].t, ch=[child[a]],
SEF=child[a].SEF)
self.FoldTree(child, a)
return
if child[0].nt == 'NEG':
# Double negation: - - expr -> expr
node = parent[index] = child[0].ch[0]
child = node.ch
elif child[0].nt == 'CONST':
node = parent[index] = child[0]
node.value = lslfuncs.neg(node.value)
child = None
if child and node.nt == 'NEG' and child[0].nt == '~':
track = child[0].ch[0]
const = 1
while track.nt == 'NEG' and track.ch[0].nt == '~':
const += 1
track = track.ch[0].ch[0]
if const > 2:
# -~-~-~expr -> expr+3
node = nr(nt='CONST', t='integer', SEF=True, value=const)
node = nr(nt='+', t='integer', ch=[node, track],
SEF=track.SEF)
parent[index] = node
return
if nt == '!':
self.FoldTree(child, 0)
self.FoldAsBool(child, 0, True)
# !! does *not* cancel out (unless in cond)
subexpr = child[0]
snt = subexpr.nt
node.SEF = subexpr.SEF
if snt == 'CONST':
node = parent[index] = subexpr
node.value = int(not node.value)
return
if snt == '<':
lop = subexpr.ch[0]
rop = subexpr.ch[1]
if (lop.nt == 'CONST' and lop.t == rop.t == 'integer'
and lop.value < 2147483647
):
lop.value += 1
subexpr.ch[0], subexpr.ch[1] = subexpr.ch[1], subexpr.ch[0]
parent[index] = subexpr # remove the !
return
if (rop.nt == 'CONST' and lop.t == rop.t == 'integer'
and rop.value > int(-2147483648)
):
rop.value -= 1
subexpr.ch[0], subexpr.ch[1] = subexpr.ch[1], subexpr.ch[0]
parent[index] = subexpr # remove the !
return
if snt == '&':
a, b = 0, 1
if subexpr.ch[b].nt != 'CONST':
a, b = 1, 0
if (subexpr.ch[b].nt == 'CONST'
and subexpr.ch[b].value == int(-2147483648)
):
# !(i & 0x80000000) -> -1 < i (because one of our
# optimizations can be counter-productive, see FoldAsBool)
subexpr.nt = '<'
subexpr.ch[b].value = -1
subexpr.ch = [subexpr.ch[b], subexpr.ch[a]]
parent[index] = subexpr
return
if snt == '!=' or snt == '^' or snt == '-' or snt == '+':
if snt == '+':
# Change !(x + y) -> -x == y, and make another pass
# to get rid of the signs where possible
subexpr.ch[0] = nr(nt='NEG', t='integer',
ch=[subexpr.ch[0]], SEF=subexpr.ch[0].SEF)
subexpr.nt = '=='
parent[index] = subexpr
self.FoldTree(parent, index)
return
return
if nt == '~':
self.FoldTree(child, 0)
subexpr = child[0]
node.SEF = subexpr.SEF
if child[0].nt == 'NEG':
track = child[0].ch[0]
const = -1
while track.nt == '~' and track.ch[0].nt == 'NEG':
const -= 1
track = track.ch[0].ch[0]
if const < -2:
# ~-~-~-expr -> expr + (-3)
node = nr(nt='CONST', t='integer', SEF=True, value=const)
node = nr(nt='+', t='integer', ch=[node, track],
SEF=track.SEF)
parent[index] = node
self.FoldTree(parent, index)
return
if subexpr.nt == '~':
# Double negation: ~~expr
parent[index] = subexpr.ch[0]
elif subexpr.nt == 'CONST':
node = parent[index] = child[0]
node.value = ~node.value
return
if nt in self.binary_ops:
# RTL evaluation
self.FoldTree(child, 1)
self.FoldTree(child, 0)
# Node is SEF if both sides are side-effect free.
node.SEF = child[0].SEF and child[1].SEF
optype = node.t
lval = child[0]
ltype = lval.t
lnt = lval.nt
rval = child[1]
rtype = rval.t
rnt = rval.nt
if lnt == rnt == 'CONST':
op1 = lval.value
op2 = rval.value
if nt == '+':
if ltype == rtype == 'string' and not self.addstrings:
return
result = lslfuncs.add(op1, op2)
elif nt == '-':
result = lslfuncs.sub(op1, op2)
elif nt == '*':
result = lslfuncs.mul(op1, op2)
elif nt == '/':
try:
result = lslfuncs.div(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '%':
try:
result = lslfuncs.mod(op1, op2)
except lslfuncs.ELSLMathError:
return
elif nt == '<<':
result = lslfuncs.S32(op1 << (op2 & 31))
elif nt == '>>':
result = lslfuncs.S32(op1 >> (op2 & 31))
elif nt == '==' or nt == '!=':
result = lslfuncs.compare(op1, op2, Eq = (nt == '=='))
elif nt in ('<', '<=', '>', '>='):
if nt in ('>', '<='):
result = lslfuncs.less(op2, op1)
else:
result = lslfuncs.less(op1, op2)
if nt in ('>=', '<='):
result = 1 - result
elif nt == '|':
result = op1 | op2
elif nt == '^':
result = op1 ^ op2
elif nt == '&':
result = op1 & op2
elif nt == '||':
result = int(bool(op1) or bool(op2))
elif nt == '&&':
result = int(bool(op1) and bool(op2))
else:
assert False, 'Internal error: Operator not found: ' + nt # pragma: no cover
parent[index] = nr(nt='CONST', t=node.t, SEF=True, value=result)
return
# Simplifications for particular operands
if nt == '-':
if optype in ('vector', 'rotation'):
if lnt == 'CONST' and all(component == 0
for component in lval.value):
# Change <0,0,0[,0]>-expr -> -expr
parent[index] = nr(nt='NEG', t=node.t, ch=[rval],
SEF=rval.SEF)
elif rnt == 'CONST' and all(component == 0
for component in rval.value):
# Change expr-<0,0,0[,0]> -> expr
parent[index] = lval
return
# Change - to + - for int/float
nt = node.nt = '+'
if child[1].nt == 'CONST':
rval.value = lslfuncs.neg(rval.value)
else:
rnt = 'NEG'
rval = child[1] = nr(nt=rnt, t=rval.t, ch=[rval],
SEF=rval.SEF)
self.FoldTree(child, 1)
# rtype unchanged
# Fall through to simplify it as '+'
if nt == '+':
# Tough one. Remove neutral elements for the various types,
# and more.
# expr + -expr -> 0
# -expr + expr -> 0
if (child[0].nt == 'NEG'
and self.CompareTrees(child[0].ch[0], child[1])
or child[1].nt == 'NEG'
and self.CompareTrees(child[1].ch[0], child[0])
):
parent[index] = nr(nt='CONST', t='integer', value=0,
SEF=True)
return
# Addition of integers, strings, and lists is associative.
# Addition of floats, vectors and rotations would be, except
# for FP precision.
# TODO: associative addition of lists
# Associative lists are trickier, because unlike the others,
# the types of the operands may not be lists
# so e.g. list+(integer+integer) != (list+integer)+integer.
if optype == 'integer' or optype == 'string' and self.addstrings:
if lnt == '+' and rnt == 'CONST' and lval.ch[1].nt == 'CONST':
# (var + ct1) + ct2 -> var + (ct1 + ct2)
child[1] = nr(nt='+', t=optype, ch=[lval.ch[1], rval],
SEF=True)
lval = child[0] = lval.ch[0]
lnt = lval.nt
ltype = lval.t
rtype = optype
# Fold the RHS again now that we have it constant
self.FoldTree(child, 1)
rval = child[1]
rnt = rval.nt
if optype == 'list' and not (ltype == rtype == 'list'):
if lnt == 'CONST' and ltype == 'list' and not lval.value:
# [] + nonlist -> (list)nonlist
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index].SEF = rval.SEF
return
if optype in ('vector', 'rotation'):
# not much to do with vectors or quaternions either
if lnt == 'CONST' and all(x == 0 for x in lval.value):
# Change <0,0,0[,0]>+expr -> expr
parent[index] = rval
elif rnt == 'CONST' and all(x == 0 for x in rval.value):
# Change expr+<0,0,0[,0]> -> expr
parent[index] = lval
return
# Can't be key, as no combo of addition operands returns key
assert optype != 'key'
if optype in ('string', 'float', 'list'):
# All these types evaluate to boolean False when they are
# the neutral addition element.
if lnt == 'CONST' and not lval.value and (ltype == rtype
or ltype == 'integer' and rtype == 'float'
or ltype == 'float' and rtype == 'integer'):
# 0 + fval -> fval
# 0. + fval -> fval
# 0. + ival -> fval
# "" + sval -> sval
# [] + lval -> lval
parent[index] = self.Cast(rval, optype)
# node is SEF if rval is
parent[index].SEF = rval.SEF
return
if rnt == 'CONST' and not rval.value and (rtype == ltype
or rtype == 'integer' and ltype == 'float'
or rtype == 'float' and ltype == 'integer'):
# fval + 0 -> fval
# fval + 0. -> fval
# ival + 0. -> fval
# sval + "" -> sval
# lval + [] -> lval
parent[index] = self.Cast(lval, optype)
# node is SEF if lval is
parent[index].SEF = lval.SEF
return
if ltype == rtype == 'list':
if (rnt == 'LIST' and len(rval.ch) == 1
or rnt == 'CONST' and len(rval.value) == 1
or rnt == 'CAST'
):
# list + (list)element -> list + element
# list + [element] -> list + element
while rnt == 'CAST' and rval.t == 'list':
# Remove nested typecasts
# e.g. list + (list)((list)x) -> list + x
rval = parent[index].ch[1] = rval.ch[0]
rnt = rval.nt
if (rnt == 'LIST' and len(rval.ch) == 1
and rval.ch[0].t != 'list'):
# Finally, remove [] wrapper if it's not
# list within list
rval = child[1] = rval.ch[0]
rnt = rval.nt
if rnt == 'CONST' and len(rval.value) == 1:
# list + [constant] -> list + constant
rval.value = rval.value[0]
rtype = rval.t = lslcommon.PythonType2LSL[
type(rval.value)]
return
if (lnt == 'LIST' and len(lval.ch) == 1
or lnt == 'CONST' and len(lval.value) == 1
or lnt == 'CAST'
):
# (list)element + list -> element + list
# [element] + list -> element + list
# (list)[element] + list -> element + list
while lnt == 'CAST' and lval.t == 'list':
# Remove nested typecasts
# e.g. (list)((list)x) + list -> x + list
lval = parent[index].ch[0] = lval.ch[0]
lnt = lval.nt
if (lnt == 'LIST' and len(lval.ch) == 1
and lval.ch[0].t != 'list'):
# Finally, remove [] wrapper if it's not
# list within list
lval = child[0] = lval.ch[0]
lnt = lval.nt
if lnt == 'CONST' and len(lval.value) == 1:
# [constant] + list -> constant + list
lval.value = lval.value[0]
ltype = lval.t = lslcommon.PythonType2LSL[
type(lval.value)]
return
if optype == 'float' and rnt == 'CONST':
# Addition of floats is commutative.
# Put the constant first. May reduce stack.
lval, rval = child[0], child[1] = child[1], child[0]
lnt, rnt = rnt, lnt
ltype, rtype = rtype, ltype
if (self.addstrings and optype == 'string' and rnt == '+'
and rval.ch[0].nt == 'CONST' and lnt == 'CONST'
):
# We have CONST + (CONST + expr) of strings.
# Apply associativity to merge both constants.
# Add the constants
child[0].value = lslfuncs.add(child[0].value,
rval.ch[0].value)
# Prune the expr and graft it as RHS
child[1] = rval.ch[1]
# Re-optimize this node to apply it recursively
return self.FoldTree(parent, index)
# Nothing else to do with addition of float, string or list
return
# Must be two integers. This allows for a number of
# optimizations. First the most obvious ones.
assert optype == 'integer' # just to make sure
# Commutativity: place the constant first; may save stack and
# it helps simplifying
if rnt == 'CONST':
lval, rval = child[0], child[1] = child[1], child[0]
lnt, rnt = rnt, lnt
ltype, rtype = rtype, ltype
if lnt == 'CONST' and lval.value == 0:
# 0 + x = x
parent[index] = rval
return
if lnt == 'CONST' and rnt == '+' and rval.ch[0].nt == 'CONST':
# We have CONST + (CONST + expr)
# Apply associativity to merge both constants.
# Add the constants
lval.value = lslfuncs.add(lval.value, rval.ch[0].value)
# Prune the expr and graft it as RHS
child[1] = rval.ch[1]
# Re-optimize the result, to possibly apply -~ or ~- if
# appropriate.
return self.FoldTree(parent, index)
while lnt == 'CONST' and rnt == 'NEG' and rval.ch[0].nt == '~':
lval.value += 1
child[1] = rval.ch[0].ch[0]
# rtype doesn't change
assert child[1].t == 'integer'
self.FoldTree(parent, index)
node = parent[index]
nt, child = node.nt, node.ch
if nt != '+':
return
lval, rval = child[0], child[1]
lnt, rnt = lval.nt, rval.nt
ltype, rtype = lval.t, rval.t
while lnt == 'CONST' and rnt == '~' and rval.ch[0].nt == 'NEG':
lval.value -= 1
child[1] = rval.ch[0].ch[0]
# rtype doesn't change
assert child[1].t == 'integer'
self.FoldTree(parent, index)
node = parent[index]
nt, child = node.nt, node.ch
if nt != '+':
return
lval, rval = child[0], child[1]
lnt, rnt = lval.nt, rval.nt
ltype, rtype = lval.t, rval.t
if lnt != 'CONST':
# Neither is const.
# The case expr - expr -> 0 has been handled earlier
# because it's more general and applies to floats as well.
# -expr + -expr -> -(expr + expr) (saves 1 byte)
if lnt == rnt == 'NEG':
node = nr(nt='+', t=optype, ch=[lval.ch[0], rval.ch[0]],
SEF=lval.ch[0].SEF and rval.ch[0].SEF)
node = nr(nt='NEG', t=optype, ch=[node], SEF=node.SEF)
parent[index] = node
return
return
RSEF = rval.SEF
if lval.value == -1 or lval.value == -2:
if rnt == 'NEG': # Cancel the NEG
node = nr(nt='~', t=optype, ch=rval.ch, SEF=RSEF)
else: # Add the NEG
node = nr(nt='NEG', t=optype, ch=[rval], SEF=RSEF)
node = nr(nt='~', t=optype, ch=[node], SEF=RSEF)
if lval.value == -2:
node = nr(nt='NEG', t=optype, ch=[node], SEF=RSEF)
node = nr(nt='~', t=optype, ch=[node], SEF=RSEF)
parent[index] = node
return
if lval.value == 1 or lval.value == 2:
if rnt == '~': # Cancel the ~
node = nr(nt='NEG', t=optype, ch=rval.ch, SEF=RSEF)
else:
node = nr(nt='~', t=optype, ch=[rval], SEF=RSEF)
node = nr(nt='NEG', t=optype, ch=[node], SEF=RSEF)
if lval.value == 2:
node = nr(nt='~', t=optype, ch=[node], SEF=RSEF)
node = nr(nt='NEG', t=optype, ch=[node], SEF=RSEF)
parent[index] = node
return
# More than 2 becomes counter-productive.
return
if nt == '<<' and child[1].nt == 'CONST':
# Transforming << into multiply saves some bytes.
if child[1].value & 31:
# x << 3 --> x * 8
# we have {<<, something, {CONST n}}
# we transform it into {*, something, {CONST n}}
nt = node.nt = '*'
child[1].value = lslfuncs.S32(1 << (child[1].value & 31))
# Fall through to optimize product
else: # x << 0 --> x
parent[index] = child[0]
return
if (nt == '%' and child[1].nt == 'CONST'
and child[1].t == 'integer'
and abs(child[1].value) == 1):
# a%1 -> a&0
# a%-1 -> a&0
# (SEF analysis performed below)
nt = node.nt = '&'
child[1].value = 0
self.FoldTree(parent, index)
return
if nt in ('*', '/'):
# TODO: <0,0,0,1>*rot, rot*<0,0,0,1>, rot/<0,0,0,1> -> rot
# <0,0,0,1>/<x,y,z,s> -> <-x,-y,-z, s>
# <0,0,0>*vec -> 0 if SEF
# <0,0,0>*rot -> <0,0,0> if SEF
# Extract signs outside
if child[0].nt == 'NEG' or child[1].nt == 'NEG':
a, b = 0, 1
if child[b].nt == 'NEG':
a, b = 1, 0
child[a] = child[a].ch[0]
parent[index] = node = nr(nt='NEG', t=node.t, ch=[node],
SEF = node.SEF)
# Fold the new expression
self.FoldTree(parent, index)
return
# Deal with operands in any order
a, b = 0, 1
if child[a].nt == 'CONST' and child[a].t in ('float', 'integer'):
a, b = 1, 0
if child[b].nt == 'CONST':
val = child[b].value
# Optimize out signs if possible.
# Note that (-intvar)*floatconst needs cornermath because
# -intvar could equal intvar if intvar = -2147483648,
# so the sign is a no-op and pushing it to floatconst would
# make the result be different.
if (child[a].nt == 'NEG'
and (self.cornermath
or child[a].t != 'integer'
or child[b].t != 'float')
):
# Expression is of the form (-float)*const or (-float)/const or const/(-float)
if val != int(-2147483648) or child[a].t == 'integer': # can't be optimized otherwise
child[a] = child[a].ch[0] # remove NEG
child[b].value = val = -val
# Five optimizations corresponding to -2, -1, 0, 1, 2
# for product, and two for division:
# expr * 1 -> expr
# expr * 0 -> 0 if side-effect free
# expr * -1 -> -expr
# ident * 2 -> ident + ident (only if ident is local)
# ident * -2 -> -(ident + ident) (only if ident is local)
# expr/1 -> expr
# expr/-1 -> -expr
if (nt == '*' and child[b].t in ('float', 'integer')
and val in (-2, -1, 0, 1, 2)
or nt == '/'
and b == 1 and val in (-1, 1)
):
if val == 1:
parent[index] = self.Cast(child[a], optype)
self.FoldTree(parent, index)
return
if val == 0:
if child[a].SEF:
parent[index] = self.Cast(child[b], optype)
self.FoldTree(parent, index)
return
if val == -1:
# Note 0.0*-1 equals -0.0 in LSL, so this is safe
node = parent[index] = nr(nt='NEG', t=node.t,
ch=[self.Cast(child[a], optype)],
SEF=child[a].SEF)
self.FoldTree(parent, index)
return
# only -2, 2 remain
if child[a].nt == 'IDENT' and self.isLocalVar(child[a]):
child[b] = self.Cast(child[a].copy(), optype)
node.nt = '+'
if val == -2:
parent[index] = nr(nt='NEG', t=optype,
ch=[node], SEF=node.SEF)
self.FoldTree(parent, index)
return
return
if nt == '==':
if child[0].t == child[1].t == 'integer':
# Deal with operands in any order
a, b = 0, 1
if child[b].nt != 'CONST':
a, b = 1, 0
# a == -1 (in any order) -> !~a,
# a == 0 -> !a
# a == 1 -> !~-a
if child[b].nt == 'CONST':
if child[b].value in (-1, 0, 1):
node = child[a]
if child[b].value == -1:
node = nr(nt='~', t='integer', ch=[node],
SEF=node.SEF)
elif child[b].value == 1:
node = nr(nt='NEG', t='integer', ch=[node],
SEF=node.SEF)
node = nr(nt='~', t='integer', ch=[node],
SEF=node.SEF)
node = parent[index] = nr(nt='!', t='integer',
ch=[node], SEF=node.SEF)
# Can't delete
# See https://docs.python.org/2/reference/simple_stmts.html#del
child = None
self.FoldTree(parent, index)
return
# -a == -b -> a == b with const variations.
# Note this changes the sign of two CONSTs but that case
# should not reach here, as those are resolved earlier.
if ((child[0].nt == 'NEG' or child[0].nt == 'CONST')
and
(child[1].nt == 'NEG' or child[1].nt == 'CONST')
):
for a in (0, 1):
if child[a].nt == 'NEG':
child[a] = child[a].ch[0] # remove sign
else:
child[a].value = lslfuncs.neg(
child[a].value)
if self.CompareTrees(child[0], child[1]):
# expr == expr -> 1
# FIXME: not true if NaN
parent[index] = nr(nt='CONST', t='integer', value=1,
SEF=True)
return
# TODO: Simplify if ((x & y) == y) for constant y to if (!(~x & y))
return
if nt in ('<=', '>=') or nt == '!=' and child[0].t != 'list':
# Except for list != list, all these comparisons are compiled
# as !(a>b) etc. so we transform them here in order to reduce
# the number of cases to check.
# a<=b --> !(a>b); a>=b --> !(a<b); a!=b --> !(a==b)
node.nt = {'<=':'>', '>=':'<', '!=':'=='}[nt]
parent[index] = nr(nt='!', t=node.t, ch=[node])
self.FoldTree(parent, index)
return
if nt == '>' and (child[0].SEF and child[1].SEF
or child[0].nt == 'CONST'
or child[1].nt == 'CONST'
):
# Invert the inequalities to avoid doubling the cases to check.
# a>b -> b<a
nt = node.nt = '<'
child[1], child[0] = child[0], child[1]
# fall through to check for '<'
if nt == '<':
# expr < expr -> 0
if self.CompareTrees(child[0], child[1]):
parent[index] = nr(nt='CONST', t='integer', value=0,
SEF=True)
return
if child[0].SEF and child[1].SEF:
lmin = self.getMin(child[0])
lmax = self.getMax(child[0])
rmin = self.getMin(child[1])
rmax = self.getMax(child[1])
# when lmax < rmin: always true
if (rmin is not None and lmax is not None
and lslfuncs.less(lmax, rmin)
):
parent[index] = nr(nt='CONST', t='integer',
value=1, SEF=True)
return
# when lmin >= rmax: always false
if (rmax is not None and lmin is not None
and not lslfuncs.less(lmin, rmax)
):
parent[index] = nr(nt='CONST', t='integer',
value=0, SEF=True)
return
del lmin, lmax, rmin, rmax
# Convert 2147483647<i and i<-2147483648 to i&0
if (child[0].t == child[1].t == 'integer'
and (child[0].nt == 'CONST'
and child[0].value == 2147483647
or child[1].nt == 'CONST'
and child[1].value == int(-2147483648))
):
a, b = 0, 1
# Put the constant in child[b]
if child[a].nt == 'CONST':
a, b = b, a
nt = node.nt = '&'
child[b].value = 0
# fall through to check for '&'
else:
return
if nt in ('&', '|'):
# expr & expr -> expr
# expr | expr -> expr
if self.CompareTrees(child[0], child[1]):
parent[index] = child[0]
return
# Deal with operands in any order
a, b = 0, 1
# Put constant in child[b]
if child[b].nt != 'CONST':
a, b = 1, 0
if child[b].nt == 'CONST':
val = child[b].value
if (nt == '|' and val == 0
or nt == '&'
and (val == -1
or val == 1 and self.IsBool(child[a]))
):
# a|0 -> a
# a&-1 -> a
# a&1 -> a if a is boolean
parent[index] = child[a]
return
if (nt == '|'
and (val == -1
or (val & 1) == 1 and self.IsBool(child[a]))
or nt == '&' and val == 0
):
# a|-1 -> -1 if a is SEF
# a|C -> C if bit 0 of C is 1 and a is bool and SEF
# a&0 -> 0 if a is SEF
if child[a].SEF:
parent[index] = child[b]
# Apply boolean distributivity
applied = False
opposite = '&' if nt == '|' else '|'
if child[0].nt == child[1].nt == opposite:
left = child[0].ch
right = child[1].ch
# Can't loop individually because we must break out of both
for c, d in ((0, 0), (0, 1), (1, 0), (1, 1)):
if self.CompareTrees(left[c], right[d]):
child[1].nt = nt
nt = node.nt = opposite
opposite = child[1].nt
right[d] = left[1 - c]
child[0] = left[c]
applied = True
break
# Apply absorption, possibly after distributivity
if child[0].nt == opposite or child[1].nt == opposite:
c = 0 if child[1].nt == opposite else 1
for d in (0, 1):
if (self.CompareTrees(child[c], child[1 - c].ch[d])
and child[1 - c].ch[1 - d].SEF
):
node = parent[index] = child[c]
nt = node.nt
child = node.ch
applied = True
break
if applied:
# Re-fold
self.FoldTree(parent, index)
return
if nt == '^':
# expr ^ expr -> 0
if self.CompareTrees(child[0], child[1]):
parent[index] = nr(nt='CONST', t='integer', value=0,
SEF=True)
return
a, b = 0, 1
if child[a].nt == 'CONST':
a, b = 1, 0
if child[b].nt == 'CONST' and child[b].value in (0, -1):
if child[b].value == 0:
parent[index] = child[a]
else:
node.nt = '~'
node.ch = [child[a]]
return
if nt == '||':
# Expand to its equivalent a || b -> !!(a | b)
node = nr(nt='|', t='integer', ch=[child[0], child[1]],
SEF=child[0].SEF and child[1].SEF)
node = nr(nt='!', t='integer', ch=[node], SEF=node.SEF)
node = nr(nt='!', t='integer', ch=[node], SEF=node.SEF)
parent[index] = node
# Make another pass with the substitution
self.FoldTree(parent, index)
elif nt == '&&':
# Expand to its equivalent a && b -> !(!a | !b)
orchildren = [
nr(nt='!', t='integer', ch=[child[0]], SEF=child[0].SEF),
nr(nt='!', t='integer', ch=[child[1]], SEF=child[1].SEF)
]
node = nr(nt='|', t='integer', ch=orchildren,
SEF=child[0].SEF and child[1].SEF)
node = nr(nt='!', t='integer', ch=[node], SEF=node.SEF)
parent[index] = node
# Make another pass with the substitution
self.FoldTree(parent, index)
return
if nt in self.assign_ops:
# Transform the whole thing into a regular assignment, as there are
# no gains and it simplifies the optimization.
# An assignment has no side effects only if it's of the form x = x.
if nt != '=':
# Replace the node with the expression alone...
# e.g. a += b -> a + b
node.nt = nt[:-1]
# Linden Craziness: int *= float; is valid (but no other
# int op= float is). It's actually performed as
# i = (integer)(i + (f));
# This breaks equivalence of x op= y as x = x op (y) so we add
# the explicit type cast here.
if (nt == '*=' and child[0].t == 'integer'
and child[1].t == 'float'):
node.t = 'float' # Addition shall return float.
node = self.Cast(node, 'integer')
# ... and wrap it in an assignment.
child = [child[0].copy(), node]
node = parent[index] = nr(nt='=', t=child[0].t, ch=child)
# We have a regular assignment either way now. Simplify the RHS.
self.FoldTree(node.ch, 1)
chkequal = child[1].ch[0] if child[1].nt == '=' else child[1]
if (child[0].nt == chkequal.nt == 'IDENT'
and chkequal.name == child[0].name
and chkequal.scope == child[0].scope
or child[0].nt == chkequal.nt == 'FLD'
and chkequal.ch[0].name == child[0].ch[0].name
and chkequal.ch[0].scope == child[0].ch[0].scope
and chkequal.fld == child[0].fld
):
parent[index] = child[1]
return
if nt == 'IDENT' or nt == 'FLD':
node.SEF = True
if self.globalmode:
ident = child[0] if nt == 'FLD' else node
# Resolve constant values so they can be optimized
sym = self.symtab[ident.scope][ident.name]
defn = self.tree[sym['Loc']]
assert defn.name == ident.name
# Assume we already were there
if defn.ch:
val = defn.ch[0]
if val.nt != 'CONST' or ident.t == 'key':
return
val = val.copy()
else:
val = nr(nt='CONST', t=defn.t,
value=self.DefaultValues[defn.t], SEF=True)
if nt == 'FLD':
val = nr(nt='CONST', t='float',
value=val.value['xyzs'.index(node.fld)], SEF=True)
parent[index] = val
return
if nt == 'FNCALL':
name = node.name
SEFargs = True
CONSTargs = True
for idx in xrange(len(child)-1, -1, -1):
self.FoldTree(child, idx)
# Function is not SEF if any argument is not SEF
SEFargs = SEFargs and child[idx].SEF
# Function is not a constant if any argument is not a constant
CONSTargs = CONSTargs and child[idx].nt == 'CONST'
sym = self.symtab[0][name]
if 'min' in sym:
node.min = sym['min']
if 'max' in sym:
node.max = sym['max']
OptimizeArgs(node, sym)
try:
if 'Fn' in sym and (self.FnSEF(node) or lslcommon.IsCalc):
# It's side-effect free if the children are and the function
# is marked as SEF.
if SEFargs:
node.SEF = True
if CONSTargs:
# Call it
fn = sym['Fn']
args = [arg.value for arg in child]
assert len(args) == len(sym['ParamTypes'])
try:
# May raise ELSLCantCompute
if 'detect' in self.symtab[0][name]:
value = fn(*args,
evsym=None if self.CurEvent is None
else self.events[self.CurEvent])
else:
value = fn(*args)
finally:
del args
if not self.foldtabs:
generatesTabs = (
isinstance(value, unicode) and u'\t' in value
or type(value) == list
and any(isinstance(x, unicode)
and u'\t' in x for x in value)
)
if generatesTabs:
if self.warntabs:
warning(u"Can't optimize call to %s"
u" because it would generate a tab"
u" character (you can force the "
u" optimization with the 'foldtabs'"
u" option, or disable this warning by"
u" disabling the 'warntabs' option)."
% name.decode('utf8'))
raise lslfuncs.ELSLCantCompute()
# Replace with a constant
parent[index] = nr(nt='CONST', t=node.t, value=value,
SEF=True)
return
elif SEFargs and 'SEF' in self.symtab[0][name]:
# The function is marked as SEF in the symbol table, and the
# arguments are all side-effect-free. The result is SEF.
node.SEF = True
except lslfuncs.ELSLCantCompute:
# Don't transform the tree if function is not computable
pass
# At this point, we have resolved whether the function is SEF,
# or whether the function resolves to a constant.
OptimizeFunc(self, parent, index)
return
if nt == 'PRINT':
self.FoldTree(child, 0)
# PRINT is considered to have side effects. If it's there, assume
# there's a reason.
return
if nt == 'EXPR':
self.FoldTree(child, 0)
node.SEF = child[0].SEF
return
if nt == 'FNDEF':
# FIXME: Fix SEFness of UDFs
# A return statement does have side effects for the current
# function, as removing it would change its behaviour drastically.
# However, when seen from the outside, that does not make the
# function as a whole have side effects: if all nodes except
# return statements are SEF, the function is SEF.
# CurEvent is needed when folding llDetected* function calls
if hasattr(node, 'scope'):
# function definition
self.CurEvent = None
else:
# event definition
self.CurEvent = node.name
self.FoldTree(child, 0)
# Test if the event is SEF and does nothing, and remove it if so.
if (not hasattr(node, 'scope') and child[0].SEF
and 'SEF' in self.events[node.name]
):
# Delete ourselves.
del parent[index]
return
# Delete trailing bare RETURNs.
# TODO: This works, but analysis of code paths is DCR's thing
# and this is incomplete, e.g. x(){{return;}} is not detected.
while child[0].ch:
last = child[0].ch[-1]
if last.nt != 'RETURN' or last.ch:
break
del child[0].ch[-1]
if child[0].SEF:
node.SEF = True
if node.name in self.symtab[0]:
# Mark the symbol table entry if it's not an event.
self.symtab[0][node.name]['SEF'] = True
return
if nt in ('VECTOR', 'ROTATION', 'LIST'):
isconst = True
issef = True
for idx in xrange(len(child)):
self.FoldTree(child, idx)
isconst = isconst and child[idx].nt == 'CONST'
issef = issef and child[idx].SEF
if isconst:
value = [x.value for x in child]
if nt == 'VECTOR':
value = Vector([lslfuncs.ff(x) for x in value])
elif nt == 'ROTATION':
value = Quaternion([lslfuncs.ff(x) for x in value])
parent[index] = nr(nt='CONST', t=node.t, value=value, SEF=True)
return
node.SEF = issef
return
if nt == 'STDEF':
for idx in xrange(len(child) - 1, -1, -1):
self.FoldTree(child, idx)
if not child:
# All events removed - add a dummy timer()
scope = len(self.symtab)
self.symtab.append({})
child.append(nr(nt='FNDEF', t=None, name='timer',
pscope=scope, ptypes=[], pnames=[],
ch=[nr(nt='{}', t=None, scope=scope, ch=[])]
))
return
if nt == '{}':
# Remove SEF statements, and mark as SEF if it ends up empty
idx = 0
nchild = len(child)
while idx < nchild:
self.FoldTree(child, idx)
self.FoldStmt(child, idx)
if child[idx].SEF:
# SEF statements can be removed
del child[idx]
nchild -= 1
else:
idx += 1
# Make another pass to remove JUMPs to the next statement
changed = True # Allow entering the loop
while changed:
changed = False
idx = 0
while idx < nchild:
advance = 1
if child[idx].nt == 'JUMP':
idx2 = idx + 1
while idx2 < nchild:
# Search for a label that is the destination of
# this JUMP, skipping other labels
if child[idx2].nt != '@':
break
if (child[idx].scope == child[idx2].scope
and child[idx].name == child[idx2].name
):
sym = self.symtab[child[idx].scope]
sym = sym[child[idx].name]
# remove the JUMP
del child[idx]
advance = 0
changed = True
idx2 -= 1 # it has scrolled
nchild -= 1
# remove reference to label
assert(sym['ref'])
sym['ref'] -= 1
if sym['ref'] == 0:
# No longer referenced - delete label too
del child[idx2]
nchild -= 1
break
idx2 += 1
del idx2
idx += advance
# We're SEF if we're empty, as we've removed all SEF statements
node.SEF = nchild == 0
return
if nt == 'IF':
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldAsBool(child, 0)
if child[0].nt == 'CONST':
# We might be able to remove one of the branches.
if lslfuncs.cond(child[0].value):
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
parent[index] = child[1]
return
elif len(child) == 3:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
parent[index] = child[2]
return
else:
# No ELSE branch, replace the statement with an empty one.
parent[index] = nr(nt=';', t=None, SEF=True)
return
else:
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
if len(child) > 2:
self.FoldTree(child, 2)
self.FoldStmt(child, 2)
# Check if it makes sense to swap if and else branches
if self.ifelseswap and not child[2].SEF:
# Check if we can gain something by negating the
# expression.
# Swap 'if' and 'else' branch when the condition has
# a '!' prefix
if child[0].nt == '!':
child[0] = child[0].ch[0]
child[1], child[2] = child[2], child[1]
# Swap them if condition is '==' with integer operands
if (child[0].nt == '=='
and child[0].ch[0].t
== child[0].ch[1].t == 'integer'
):
child[0].nt = '^'
child[1], child[2] = child[2], child[1]
# Re-test just in case we swapped in the previous check.
if child[2].SEF:
# no point in "... else ;" - remove else branch
del child[2]
if child[1].SEF:
# if (X) ; -> X;
if len(child) == 2:
parent[index] = nr(nt='EXPR', t=child[0].t,
ch=[child[0]], SEF=child[0].SEF)
# It has been promoted to statement. Fold it as such.
# (Will remove it if SEF)
self.FoldStmt(parent, index)
return
# If type(X) != Key, then:
# if (X) ; else {stuff} -> if (!X) {stuff}
if child[0].t != 'key':
# We've already converted all other types to equivalent
# comparisons
assert child[0].t == 'integer'
child[0] = nr(nt='!', t='integer', ch=[child[0]])
del child[1]
self.FoldTree(child, 0)
self.FoldAsBool(child, 0)
if all(subnode.SEF for subnode in child):
node.SEF = True
return
if nt == 'WHILE':
# Loops are not considered side-effect free. If the expression is
# TRUE, it's definitely not SEF. If it's FALSE, it will be optimized
# out anyway. Otherwise we just don't know if it may be infinite,
# even if every component is SEF.
if not child[1].SEF:
self.ExpandCondition(child, 0)
self.FoldTree(child, 0)
self.FoldAsBool(child, 0)
if child[0].nt == 'CONST':
# See if the whole WHILE can be eliminated.
if not lslfuncs.cond(child[0].value):
# Whole statement can be removed.
parent[index] = nr(nt=';', t=None, SEF=True)
return
self.FoldTree(child, 1)
self.FoldStmt(child, 1)
return
# It does nothing - Turn it into a do..while
nt = node.nt = 'DO'
child[0], child[1] = child[1], child[0]
# Fall through to optimize as DO..WHILE
if nt == 'DO':
self.FoldTree(child, 0) # This one is always executed.
self.FoldStmt(child, 0)
self.ExpandCondition(child, 1)
self.FoldTree(child, 1)
self.FoldAsBool(child, 1)
# See if the latest part is a constant.
if child[1].nt == 'CONST':
if not lslfuncs.cond(child[1].value):
# Only one go. Replace with the statement(s).
parent[index] = child[0]
return
if nt == 'FOR':
assert child[0].nt == 'EXPRLIST'
assert child[2].nt == 'EXPRLIST'
self.FoldAndRemoveEmptyStmts(child[0].ch)
self.ExpandCondition(child, 1) # Condition.
self.FoldTree(child, 1)
self.FoldAsBool(child, 1)
if child[1].nt == 'CONST':
# FOR is delicate. It can have multiple expressions at start.
# And if there is more than one, these expressions will need a
# new block, which means new scope. They are expressions, no
# declarations or labels allowed, thus no new identifiers may
# be created in the new scope.
if lslfuncs.cond(child[1].value):
# Endless loop. Traverse the loop and the iterator.
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2].ch)
else:
# Loop never executes.
# Convert expression list to code block.
exprlist = []
for expr in child[0].ch:
# Fold into expression statements.
exprlist.append(nr(nt='EXPR', t=expr.t, ch=[expr]))
# returns type None, as FOR does
if exprlist:
# We're in the case where there are expressions. If any
# remain, they are not SEF (or they would have been
# removed earlier) so don't mark this node as SEF.
scope = len(self.symtab)
self.symtab.append({})
parent[index] = nr(nt='{}', t=None, scope=scope,
ch=exprlist)
else:
parent[index] = nr(nt=';', t=None, SEF=True)
return
else:
self.FoldTree(child, 3)
self.FoldStmt(child, 3)
self.FoldAndRemoveEmptyStmts(child[2].ch)
return
if nt == 'RETURN':
if child:
self.FoldTree(child, 0)
return
if nt == 'DECL':
if child:
# Check if child is a simple_expr. If it is, then we keep the
# original attached to the folded node to use it in the output.
if getattr(child[0], 'Simple', False):
orig = self.CopyNode(child[0])
del orig.Simple # presence of orig in child will be enough
self.FoldTree(child, 0)
child[0].orig = orig
else:
self.FoldTree(child, 0)
# Remove assignment if integer zero.
if (node.t == 'integer' and child[0].nt == 'CONST'
and not child[0].value
):
node.ch = None
return
else:
# Add assignment if vector, rotation or float.
if node.t in ('float', 'vector', 'rotation'):
typ = node.t
node.ch = [nr(nt='CONST', t=typ, SEF=True,
value=0.0 if typ == 'float'
else ZERO_VECTOR if typ == 'vector'
else ZERO_ROTATION)]
# Declarations always have side effects.
return
if nt == 'STSW':
# State switch always has side effects.
return
if nt == 'SUBIDX':
# Recurse to every child. It's SEF if all children are.
idx = 0
issef = True
while idx < len(child):
self.FoldTree(child, idx)
issef = issef and child[idx].SEF
idx += 1
node.SEF = issef
return
if nt == ';':
node.SEF = True
return
if nt == '@':
# SEF if there are no JUMPs jumping to it
node.SEF = not self.symtab[node.scope][node.name]['ref']
return
if nt in ('JUMP', 'V++', 'V--', '--V', '++V', 'LAMBDA'):
# Except LAMBDA, these all have side effects, as in, can't be
# eliminated as statements.
# LAMBDA can't be eliminated without scrolling Loc's.
return
assert False, 'Internal error: This should not happen, node type = ' \
+ nt # pragma: no cover
def IsValidGlobalIdOrConst(self, node):
# nan can't be represented as a simple constant; all others are valid
return not (node.nt == 'CONST' and node.t == 'float'
and math.isnan(node.value))
def IsValidGlobalConstant(self, decl):
if decl.ch is None:
return True
expr = decl.ch[0]
if expr.nt in ('CONST', 'IDENT'):
return self.IsValidGlobalIdOrConst(expr)
if expr.nt not in ('VECTOR', 'ROTATION', 'LIST'):
return False
return all(elem.nt in ('CONST', 'IDENT')
and self.IsValidGlobalIdOrConst(elem)
for elem in expr.ch)
def FoldScript(self, warningpass = True):
"""Optimize the symbolic table symtab in place. Requires a table of
predefined functions for folding constants.
"""
self.globalmode = False
tree = self.tree
self.CurEvent = None
FuncOptSetup()
# Constant folding pass. It does some other optimizations along the way.
for idx in xrange(len(tree)):
if tree[idx].nt == 'DECL':
self.globalmode = True
self.FoldTree(tree, idx)
self.globalmode = False
if warningpass and not self.IsValidGlobalConstant(tree[idx]):
warning(u"Expression in globals doesn't resolve to a simple constant.")
else:
self.FoldTree(tree, idx)